2021-2022学年浙教版数学八下2.2 一元二次方程的解法 同步练习
年级: 学科: 类型:同步测试 来源:91题库
一、单选题(共12小题)
1、已知直角三角形的两条直角边的长是方程x2﹣7x+12=0的两根,则这个直角三角形外接圆的半径( )
A . 7
B . 2.5
C .
D . 5

2、若关于
的一元二次方程
有一根为0,则
的的值为( )



A . 2
B . -1
C . 2或-1
D . 1或-2
3、若
、
是方程
的两个解,则代数式
的值为( )




A . 8
B . 10
C . 12
D . 14
4、在平面直角坐标系中,如果点P的横坐标与纵坐标相等,则称点P为和谐点,例如:点P(1,1)、(﹣2,﹣2)、(0.5,0.5)…,都是和谐点,若二次函数y=ax2+7x+c(a≠0)的图象上有且只有一个和谐点(﹣1,﹣1),则此二次函数的解析式为( )
A . y=3x2+7x+3
B . y=2x2+7x+4
C . y=x2+7x+5
D . y=4x2+7x+2
5、用求根公式法解方程
的解是( )

A .
B .
C .
D .




6、关于x的一元二次方程
的根的情况是( )

A . 没有实数根
B . 有一个实数根
C . 有两个相等的实数根
D . 有两个不相等的实数根
7、关于x的方程
(p为常数)的根的情况,下列结论中正确的是( )

A . 两个正根
B . 两个负根
C . 一个正根,一个负根
D . 无实数根
8、关于x的一元二次方程
的根的情况是( )

A . 没有实数根
B . 只有一个实数根
C . 有两个不相等的实数根
D . 有两个相等的实数根
9、下列一元二次方程中,有两个相等的实数根的是( )
A . x2﹣2x=0
B . x2+4x=﹣4
C . 2x2﹣4x+3=0
D . 3x2=5x﹣2
10、一元二次方程x2﹣16=0的根是( )
A . 4
B . ﹣4
C . ±4
D . 16
11、方程kx2﹣6x+1=0有实数根,则k的取值范围是( )
A . k≤9
B . k≤9且k≠0
C . k≠0
D . k>9
12、用配方法解一元二次方程
,配方后的结果是( )

A .
B .
C .
D .




二、填空题(共6小题)
1、将一元二次方程
化成
的形式,那么
的值为 .



2、若关于x的一元二次方程(k﹣2)x2+4x+2=0有实数根,则k的取值范围是 .
3、如果一个直角三角形的三边长为三个连续偶数,则它的周长为 .
4、关于x的一元二次方程(a+1)x2+2x+1=0有两个不相等的实数根,则a的取值范围是 .
5、解方程:
.

6、规定:如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.已知关于x的一元二次方程(x﹣2)(x+m)=0是“倍根方程”,则m的值为 .
三、综合题(共8小题)
1、嘉琪准备完成题目:解一元二次方程
.

(1)若“
”表示常数
,请你用配方法解方程:
;
(2)若“
”表示一个字母,且一元二次方程
有实数根.求“
”的最大值.
2、下面是小勇解一元二次方程的过程,请认真阅读并完成相应的任务.
解∶2x2+4x-6=0
二次项系数化为1,得x²+2x-3=0.……………………… 第一步
移项,得x2+2x=3.…………………………………… ……第二步
配方,得x2+2x+4=3+4.即(x+2)2=7.…………… ………第三步
由此,可得x+2=± . ………………………………… 第四步
x1=2+ ,x2=2-
.……………………………………第五步
任务∶
(1)上面小勇同学的解法中运用“配方法”将该一元二次方程“降次”为两个一元—次方程,体现的数学思想是 ;其中配方法依据的一个数学公式是 ;
(2)“第二步”变形的依据 ;
(3)上面小勇同学的解题过程中,从第 ▲ 步开始出现错误,写出正确的解答过程.
3、
(1)用配方法解方程:
;

(2)若关于x的一元二次方程
有一个解为
,求k的值.


4、已知:关于x的一元二次方程x2﹣(k+3)x+2k+2=0
(1)若方程有一个根1,求k的值和方程另外一个根;
(2)求证:方程总有两个实数根.
5、已知关于x的一元二次方程x2﹣mx+2m﹣4=0.
(1)求证:该一元二次方程总有两个实数根;
(2)若该方程一个小于5的根,另一个根大于5,求m的取值范围;
(3)若x1 , x2为方程的两个根,且n=x12+x22﹣8,试判断动点P(m,n)所形成的图象是否经过定点(﹣3,21),并说明理由.
6、关于x的一元二次方程x2+mx+n=0.
(1)若方程有两个不相等的实数根,且m=﹣4,求n的取值范围;
(2)若方程有两个相等的实数根,用含m的代数式表示n.
7、
(1)请你用公式法解方程3x2﹣5x﹣8=0;
(2)请你用因式分解法解方程x2+4x+3=0.
8、用你喜欢的方法解下列方程
(1)x2+3x-4=0
(2)2x2+5x=3
(3)x(x+1)=1
(4)2+y(1-3y)=y(y-3)