2015-2016学年北京市燕山区九年级上学期期末数学试卷
年级:九年级 学科:数学 类型:期末考试 来源:91题库
一、单选题(共10小题)









如图,在Rt△ABC中,∠C=90°,AC=3,AB=5,则cosB的值为( )


















二、填空题(共6小题)
种子总数 | 100 | 400 | 800 | 1000 | 3500 | 7000 | 9000 | 14000 |
发芽种子数 | 91 | 354 | 716 | 901 | 3164 | 5613 | 8094 | 12614 |
发芽的频率 | 0.91 | 0.885 | 0.895 | 0.901 | 0.904 | 0.902 | 0.899 | 0.901 |
则该玉米种子发芽的概率估计值为 (结果精确到0.1).
《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中卷第九勾股,主要讲述了以测量问题为中心的直角三角形三边互求的关系.其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”
译文:“今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”(注:1里=300步)
你的计算结果是:出南门 步而见木.

小明是这样思考的:当k<0时,反比例函数的图象是y随x的增大而增大的,并且﹣2<1<4,所以y1<y2<y3 .
你认为小明的思考 (填“正确”和“不正确”),理由是 .
阅读下面材料:
在数学课上,老师提出如下问题:
尺规作图:作Rt△ABC,使其斜边AB=c,一条直角边BC=a.
已知线段a,c如图.
小芸的作法如下:
①取AB=c,作AB的垂直平分线交AB于点O;
②以点O为圆心,OB长为半径画圆;
③以点B为圆心,a长为半径画弧,与⊙O交于点C;
④连接BC,AC.
则Rt△ABC即为所求.
老师说:“小芸的作法正确.”
请回答:小芸的作法中判断∠ACB是直角的依据是
三、计算题(共2小题)

四、解答题(共11小题)
如图,⊙O的半径为5,AB为弦,OC⊥AB,交AB于点D,交⊙O于点C,CD=2,求弦AB的长.


(1)求证:△ACD∽△CBD;
(2)求∠ACB的大小.
(1)在网格中画出△AB1C1;
(2)计算点B旋转到B1的过程中所经过的路径长.(结果保留π)
(1)用配方法将y=2x2﹣8x化成y=a(x﹣h)2+k的形式;
(2)求出该二次函数的图象与x轴的交点A,B的坐标(A在B的左侧);
(3)将该二次函数的图象沿x轴向左平移2个单位,再沿y轴向上平移3个单位,请直接写出得到的新图象的函数表达式.

(1)求反比例函数y=(k≠0)的表达式;
(2)若P是y轴上一点,且满足△ABP的面积为6,求点P的坐标.



(1)求证:∠DAC=∠DCE;
(2)若AB=2,sin∠D= , 求AE的长.

小东根据学习函数的经验,对函数y=+x的图象与性质进行了探究.
下面是小东的探究过程,请补充完整:
(1)函数y=+x的自变量x的取值范围是;
(2)下表是y与x的几组对应值.
求m的值;
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数的图象,写出该函数的其它性质(一条即可)
(1)求抛物线的表达式;
(2)求一次函数y=x+n的表达式;
(3)将直线l:y=mx+n绕其与y轴的交点E旋转,使当﹣1≤x≤1时,直线l总位于抛物线的下方,请结合函数图象,求m的取值范围.
如图1,△ABC和△CDE都是等腰直角三角形,∠C=90°,将△CDE绕点C逆时针旋转一个角度α(0°<α<90°),使点A,D,E在同一直线上,连接AD,BE.
(1)①依题意补全图2;
②求证:AD=BE,且AD⊥BE;
③作CM⊥DE,垂足为M,请用等式表示出线段CM,AE,BE之间的数量关系;
(2)如图3,正方形ABCD边长为 , 若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.
在平面直角坐标系xOy中,⊙C的半径为r,点P是与圆心C不重合的点,给出如下定义:若点P′为射线CP上一点,满足CP•CP′=r2 , 则称点P′为点P关于⊙C的反演点.右图为点P及其关于⊙C的反演点P′的示意图.
(1)如图2,当⊙O的半径为1时,分别求出点M(1,0),N(0,2),T( ,
)关于⊙O的反演点M′,N′,T′的坐标;
(2)如图3,已知点A(1,4),B(3,0),以AB为直径的⊙G与y轴交于点C,D(点C位于点D下方),E为CD的中点.
①若点O,E关于⊙G的反演点分别为O′,E′,求∠E′O′G的大小;
②若点P在⊙G上,且∠BAP=∠OBC,设直线AP与x轴的交点为Q,点Q关于⊙G的反演点为Q′,请直接写出线段GQ′的长度.