浙教版备考2020年中考数学一轮专题9 圆 (1)
年级: 学科:数学 类型: 来源:91题库
一、选择题(共10小题)
1、
如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是( )
A . 12cm
B . 6cm
C . 3
cm
D . 2
cm


2、在 Rt△ABC 中,∠C=90°,BC=3cm,AC=4cm,以点C 为圆心,以2.5cm 为半径画圆,则⊙C与直线AB的位置关系是 ( )
A . 相交
B . 相切
C . 相离
D . 不能确定
3、如图,⊙O的直径AB垂直于弦CD , ∠CAB=36°,则∠BCD的大小是( )
A . 18°
B . 36°
C . 54°
D . 72°
4、如图, AB是⊙O的直径, C, D是⊙O上AB两侧的点,若∠D=30°,则tan ∠ABC的值为( )
A .
B .
C .
D .




5、如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是( )
A .
B . 2
C . 6
D . 8


6、如图,AB是⊙O的直径,C、D是圆上的点,若∠D=20°,则 ∠BAC的值( )
A . 20°
B . 60°
C . 70°
D . 80°
7、如图, AB是⊙O的直径,且经过弦CD的中点H,已知cos∠CDB=
,BD=5,则OH的长度为( )

A .
B .
C . 1
D .



8、如图,在平面直角坐标系中,⊙P与y轴相切,交直线y=x于A,B两点,已知圆心P的坐标为(2,a)(a>2),AB=2
,则a的值为( )

A . 4
B . 2+
C .
D .



9、如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1 , l2 , 侧面积分别记作S1 , S2 , 则( )
A . l1∶l2=1∶2,S1∶S2=1∶2
B . l1∶l2=1∶4,S1∶S2=1∶2
C . l1∶l2=1∶2,S1∶S2=1∶4
D . l1∶l2=1∶4,S1∶S2=1∶4
10、如图,在菱形ABCD中,对角线AC,BD交于点O,以OB为直径画⊙M,过点D作⊙M的切线,切点为N,分别交AC,BC于点E、F,已知AE=5,CE=3,则DF的长是( )
A . 3
B . 4
C . 4.8
D . 5
二、填空题(共4小题)
1、如图,已知在△ABC中,AB=AC.以AB为直径作半圆O,交BC于点D.若∠BAC=40°,则
的度数是 度.

2、如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为D,AB=BC=2,则∠AOB= °.
3、如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆,如果点C在⊙A内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是 .
4、如图,正方形ABCD的边长为1,分别以顶点A,B,C,D为圆心,1为半径画弧,四条弧交于点E,F,G,H,则图中阴影部分的外围周长为 .
三、解答题(共4小题)
1、如图,⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C,D;与边BC相交于点F,OA与CD相交于点E,连结FE并延长交AC边于点G.
(1)求证:DF∥AO.
(2)若AC=6,AB=10,求CG的长.
2、如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D,F两点,且CD=
,以O为圆心,OC为半径作
,交OB于E点.


(1)求⊙O的半径OA的长;
(2)计算阴影部分的面积.
3、如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为点D,AD交⊙O于点E,连结CE.
(1)判断CD与⊙O的位置关系,并证明你的结论;
(2)若E是
的中点,⊙O的半径为1,求图中阴影部分的面积.

4、如图1,直线l:y=-
x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<
).以点A为圆心,AC长为半径作⊙A交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.


(1)求直线l的函数表达式和tan∠BAO的值;
(2)如图2,连结CE,当CE=EF时,
①求证:△OCE∽△OEA;
②求点E的坐标;
(3)当点C在线段OA上运动时,求OE·EF的最大值.