浙江省宁波市宁波十校2019-2020学年高三上学期数学11月月考试卷

年级: 学科:数学 类型:月考试卷 来源:91题库

一、单选题(共10小题)

1、已知集合A={x| 0},B={x|1<x≤2},则A∩B=(    )
A . {x|1<x<2} B . {x|1<x≤2} C . {x|﹣1≤x≤2} D . {x|﹣1≤x<2}
2、若复数 为纯虚数,其中 为虚数单位,则 (    )
A . 2 B . 3 C . -2 D . -3
3、已知三个实数2,a,8成等比数列,则双曲线 的渐近线方程为(    )
A . 3x±4y=0 B . 4x±3y=0 C . x±2y=0 D . 9x±16y=0
4、若实数x,y满足x+y>0,则“x>0”是“x2>y2”的(    )
A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件 D . 既不充分也不必要条件
5、已知函数f(x)=x2﹣3x﹣3,x∈[0,4],当x=a时,f(x)取得最大值b,则函数 的图象为(    )
A . 图片_x0020_100001 B . 图片_x0020_100002 C . 图片_x0020_100003 D . 图片_x0020_100004
6、已知实数 满足不等式组 ,若 的最大值为8,则z的最小值为(    )
A . ﹣2 B . ﹣1 C . 0 D . 1
7、函数f(x)=sin(ωx+φ)(ω>0, )满足f( )=f( )=﹣f( ),且当x∈[ ]时恒有f(x)≥0,则(    )
A . ω=2 B . ω=4 C . ω=2或4 D . ω不确定
8、今有男生3人,女生3人,老师1人排成一排,要求老师站在正中间,女生有且仅有两人相邻,则共有多少种不同的排法?(    )
A . 216 B . 260 C . 432 D . 456
9、如图,点E为正方形ABCD边CD上异于点C、D的动点,将△ADE沿AE翻折成△SAE,在翻折过程中,下列三个说法中正确的个数是(    )

①存在点E和某一翻折位置使得AE∥平面SBC;②存在点E和某一翻折位置使得SA⊥平面SBC;③二面角S﹣AB﹣E的平面角总是小于2∠SAE.

图片_x0020_100006

A . 0 B . 1 C . 2 D . 3
10、已知函数f(x) ,g(x)=f( )+1(k∈R,k≠0),则下列关于函数y=f[g(x)]+1的零点个数判断正确的是(    )
A . 当k>0时,有2个零点;当k<0时,有4个零点 B . 当k>0时,有4个零点;当k<0时,有2个零点 C . 无论k为何值,均有2个零点 D . 无论k为何值,均有4个零点

二、填空题(共7小题)

1、已知θ∈(0,π),且sin( θ) ,则cos(θ )=      ,sin2θ=      
2、在二项式 的展开式中,各项系数的和为      ,含x的一次项的系数为      .(用数字作答)
3、祖暅是我国南北朝时代的伟大科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”,称为祖暅原理.意思是底面处于同一平面上的两个同高的几何体,若在等高处的截面面积始终相等,则它们的体积相等.利用这个原理求半球O的体积时,需要构造一个几何体,该几何体的三视图如图所示,则该几何体的体积为      ,表面积为      

图片_x0020_100008

4、一个袋中装有10个大小相同的黑球、白球和红球.已知从袋中任意摸出2个球,至少得到一个白球的概率是 ,则袋中的白球个数为      ,若从袋中任意摸出3个球,记得到白球的个数为ξ,则随机变量ξ的数学期望Eξ=      
5、已知常数p>0,数列{an}满足an+1=|p﹣an|+2an+p(n∈N*),首项为a1 , 前n项和为Sn . 若Sn≥S3对任意n∈N*成立,则 的取值范围为      
6、已知椭圆 ,倾斜角为60°的直线与椭圆分别交于A、B两点且 ,点C是椭圆上不同于A、B一点,则△ABC面积的最大值为      
7、已知平面向量 满足: 的夹角为 ,| |=5, 的夹角为 ,| |=3 ,则 的最大值为      

三、解答题(共5小题)

1、已知△ABC的内角A、B、C的对边分别为a、b、c,且
(1)求A;
(2)若 ,求△ABC的面积S的最大值.
2、如图,四边形ABCD为菱形,四边形ACFE为平行四边形,设BD与AC相交于点G,AB=BD=AE=2,∠EAD=∠EAB.

(1)证明:平面ACFE⊥平面ABCD;
(2)若直线AE与BC的夹角为60°,求直线EF与平面BED所成角的余弦值.
3、已知等差数列{an}的前n项和为Sn , 且a2+2a4=a9 , S6=36.
(1)求an , Sn
(2)若数列{bn}满足b1=1, ,求证: (n∈N*).
4、如图,P是抛物线E:y2=4x上的动点,F是抛物线E的焦点.

图片_x0020_100014

(1)求|PF|的最小值;
(2)点B,C在y轴上,直线PB,PC与圆(x﹣1)2+y2=1相切.当|PF|∈[4,6]时,求|BC|的最小值.
5、已知函数
(1)当a∈R时,讨论函数f(x)的单调性;
(2)对任意的x∈(1,+∞)均有f(x)<ax,若a∈Z,求a的最小值.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 浙江省宁波市宁波十校2019-2020学年高三上学期数学11月月考试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;