2018-2019学年初中数学人教版七年级下册 第五章相交线与平行线 单元卷(A)

年级: 学科:数学 类型:单元试卷 来源:91题库

一、选择题(共13小题)

1、如果线段AB与线段CD没有交点,则(  )

A . 线段AB与线段CD一定平行  B . 线段AB与线段CD一定不平行 C . 线段AB与线段CD可能平行 D . 以上说法都不正确
2、

如图,∠1=∠2,∠3=40°,则∠4等于(  )

A . 120° B . 130° C . 140° D . 40°
3、

如图,已知a∥b,∠1=65°,则∠2的度数为(  )

A . 65° B . 125° C . 115° D . 25°
4、将一直角三角板与两边平行的纸条如图放置.已知∠1=30°,则∠2的度数为(  )

A . 30° B . 45° C . 50° D . 60°
5、如图,直线l1∥l2 , ∠A=125°,∠B=85°,则∠1+∠2=(   )

A . 30° B . 35° C . 36° D . 40°
6、如图直线AB、CD相交于点O,∠1=∠2,若∠AOE=140°,则∠AOC的度数为(   )

A . 50° B . 60° C . 70° D . 80°
7、如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是(   )

A . 60° B . 50° C . 40° D . 30°
8、尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是(   )
A . B . C . D .
9、挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。如图中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,则第6次应拿走( )

A . ②号棒 B . ⑦号棒 C . ⑧号棒 D . ⑩号棒 
10、下列说法中,正确的是(   )
A . 在同一平面内,两条直线的位置关系只有相交,平行两种 B . 在同一平面内,不相交的两条线段互相平行 C . 在同一平面内,不相交的两条直线互相平行 D . 在同一平面内,不相交的两条射线互相平行
11、下列命题:

①两条直线被第三条直线所截,同位角相等;

②两点之间,线段最短;

③相等的角是对顶角;

④同角或等角的补角相等。

其中是真命题的有(   )个。

A . 1 B . 2 C . 3 D . 4
12、如图,已知直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数为(   )

A . 30° B . 60° C . 120° D . 150°
13、已知n(n≥3,且n为整数)条直线中只有两条直线平行,且任何三条直线都不交于同一个点.如图,当n=3时,共有2个交点;当n=4时,共有5个交点;当n=5时,共有9个交点;…依此规律,当共有交点个数为27时,则n的值为(     )

A . 6 B . 7 C . 8 D . 9

二、填空题(共5小题)

1、如图,已知 a ∥ b ,小亮把三角板的直角顶点放在直线 b 上.若∠1=40°,则∠2的度数为      

2、如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是      

3、如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=      °

4、两个角的两边两两互相平行,且一个角的 等于另一个角的 ,则这两个角的度数分别为      度,      度.
5、如图,直线 相交于点 于点 ,连接 .

(1)若 ,则 =      ;
(2)若 =2 cm, =1.5 cm, =2.5 cm,则点 的距离是      cm.

三、解答题(共8小题)

1、

如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.


2、观察,在如图所示的各图中找对顶角(不含平角):

(1)如图a,图中共有      对对顶角.
(2)如图b,图中共有      对对顶角.
(3)如图c,图中共有      对对顶角
(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成多少对对顶角?
(5)若有2000条直线相交于一点,则可形成多少对对顶角?
3、已知,如图,AD∥BE,∠1=∠2,求证:∠A=∠E.

证明:∵AD∥BE(已知),

∴∠A=∠    ▲       ▲    

又∵∠1=∠2(已知),

∴AC∥    ▲       ▲     ),

∴∠3=∠   ▲        ▲     ),

∴∠A=∠E(等量代换).

4、如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.

5、如图,直线AB、CD相交于点O,若∠AOE=40°,OA平分∠COE,求∠BOD的度数.

6、如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.

7、如图,直线AB,CD,EF被直线GH所截,∠1=70°,∠2=110°,∠3=70°,求证AB∥CD

证明:∵∠1=70°,∠3=70°

∴∠3=∠1    ▲    .

    ▲      ▲      .

∵∠2=110°,∠3=70°(已知)

    ▲    +    ▲    =180° (等式的性质)

    ▲        ▲   

∴AB∥CD   ▲    

8、如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.

(1)求∠DOF的度数;
(2)试说明OD平分∠AOG.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2018-2019学年初中数学人教版七年级下册 第五章相交线与平行线 单元卷(A)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;