2015年江苏省扬州市中考数学真题试卷
年级:中考 学科:数学 类型:中考真卷 来源:91题库
一、单选题:本大题共8小题,每小题3分,共24分(共8小题)
如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是( )




如图所示的物体的左视图为( )




如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是( )
如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为( )
二、填空题:本大题共有10小题,每小题3分,共30分(共10小题)
抽取的体检表数n | 50 | 100 | 200 | 400 | 500 | 800 | 1000 | 1200 | 1500 | 2000 |
色盲患者的频数m | 3 | 7 | 13 | 29 | 37 | 55 | 69 | 85 | 105 | 138 |
色盲患者的频率m/n | 0.060 | 0.070 | 0.065 | 0.073 | 0.074 | 0.069 | 0.069 | 0.071 | 0.070 | 0.069 |
根据表中数据,估计在男性中,男性患色盲的概率为 ( 结果精确到0.01).
如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=4cm,则线段BC= cm.
如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形纸片的两条直角边相交成∠1、∠2,则∠2﹣∠1= .
如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=
如图,已知△ABC的三边长为a、b、c,且a<b<c,若平行于三角形一边的直线l将△ABC的周长分成相等的两部分.设图中的小三角形①、②、③的面积分别为S1 , S2 , S3 , 则S1 , S2 , S3的大小关系是 (用“<”号连接)
三、解答题(本大题共有10小题,共96分.)(共10小题)



(2)化简:÷(
﹣
).

在“爱满扬州”慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成统计图.
如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.
如图,已知⊙O的直径AB=12cm,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.



如图1,直线l⊥AB于点B,点C在AB上,且AC:CB=2:1,点M是直线l上的动点,作点B关于直线CM的对称点B′,直线AB′与直线CM相交于点P,连接PB.
如图2,若点P与点M重合,则∠PAB= , 线段PA与PB的比值为
如图3,若点P与点M不重合,设过P,B,C三点的圆与直线AP相交于D,连接CD,求证:①CD=CB′;②PA=2PB
如图4,若AC=2,BC=1,则满足条件PA=2PB的点都在一个确定的圆上,在以下小题中选做一题:
①如果你能发现这个确定的圆的圆心和半径,那么不必写出发现过程,只要证明这个圆上的任意一点Q,都满足QA=2QB;
②如果你不能发现这个确定的圆的圆心和半径,那么请取出几个特殊位置的P点,如点P在直线AB上,点P与点M重合等进行探究,求这个圆的半径.