2018-2019学年数学人教版九年级上册21.2.4 根与系数的关系 同步训练
年级: 学科:数学 类型:同步测试 来源:91题库
一、选择题(共10小题)
1、定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是( )
A . 方有两个相等的实数根
B . 方程有一根等于0
C . 方程两根之和等于0
D . 方程两根之积等于0
2、设x1、x2是方程2x2﹣4x﹣3=0的两根,则x1+x2的值是( )
A . 2
B . ﹣2
C .
D . ﹣


3、关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是( )
A . ﹣6
B . ﹣3
C . 3
D . 6
4、如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是( )
A . x2+3x+4=0
B . x2﹣4x+3=0
C . x2+4x﹣3=0
D . x2+3x﹣4=0
5、若α、β为方程
的两个实数根,则
的值为( )。


A .
B . 12
C . 14
D . 15

6、已知α,β是关于x的一元二次方程x2+ (2m+3)x+m2=0 的两个不相等的实数根,且满足
= -1,则m的值是( ).

A . 3或 -1
B . 3
C . -1
D . -3 或 1
7、关于x的方程
的两根互为相反数,则k的值是( )

A . 2
B . ±2
C . -2
D . -3
8、已知x1 , x2是一元二次方程x2+2x﹣k﹣1=0的两根,且x1x2=﹣3,则k的值为( )
A . 1
B . 2
C . 3
D . 4
9、已知α,β是方程x2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为( ).
A . 1
B . 2
C . 3
D . 4
10、已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,m≠n,则(m﹣1)2+(n﹣1)2的最小值是( )
A . 6
B . 3
C . ﹣3
D . 0
二、填空题(共6小题)
1、已知关于x的一元二次方程x2﹣4x+k=0有两个不相等的实数根,且该方程与x2+mx﹣1=0有一个相同的根.当k为符合条件的最大整数时,m的值为 .
2、已知方程x2-mx-3m=0的两根是x1、x2 , 若x1+x2=1,则 x1x2= .
3、已知关于
的一元二次方程
有两个实数根
和
.若
时,则
= .






4、当关于x的一元二次方程ax2+bx+c=0有实数根,且其中一个根为另一个根的2倍时,称之为“倍根方程”. 如果关于x的一元二次方程x2+(m-2)x-2m=0是“倍根方程”,那么m的值为 .
5、我们知道若关于x的一元二次方程
有一根是1,则a+b+c=0,那么如果
,则方程
有一根为



6、若关于
的一元二次方程
的两个不等实数根分别为
,且
,则
的值为 .





三、解答题(共6小题)
1、设x1、x2是一元二次方程2x2﹣7x+5=0的两根,利用一元二次方程根与系数的关系,求下列各式的值.
(1)x12x2+x1x22;
(2)(x1﹣x2)2
2、已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.
(1)当m取何值时,方程有两个不相等的实数根?
(2)设x1、x2是方程的两根,且x12+x22=22+x1x2 , 求实数m的值.
3、已知关于x的方程x2﹣(m+3)x+
=0.

(1)若方程有实根,求实数m的取值范围.
(2)若方程两实根分别为x1、x2且满足x12+x22=|x1x2|+
,求实数m的值.

4、已知x1 , x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.
(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;
(2)求使(x1+1)(x2+1)为正整数的实数a的整数值.
5、
(1)解方程:
;

(2)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.
①如果x=-1是方程的根,试判断△ABC的形状,并说明理由;
②如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
③如果△ABC是等边三角形,试求这个一元二次方程的根.
6、已知关于x的方程x2﹣(m+n+1)x+m(n≥0)的两个实数根为α、β,且α≤β.
(1)试用含α、β的代数式表示m和n;
(2)求证:α≤1≤β;
(3)若点P(α,β)在△ABC的三条边上运动,且△ABC顶点的坐标分别为A(1,2)、B(
,1)、C(1,1),问是否存在点P,使m+n=
?若存在,求出点P的坐标;若不存在,请说明理由.

