浙教版数学八年级下册4.2平行四边形基础练习

年级:八年级 学科:数学 类型:同步测试 来源:91题库

一、单选题(共15小题)

1、如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是(  )

A . 6 B . 8 C . 10 D . 12
2、在面积为60的▱ABCD中,过点A作AE⊥直线BC于点E,作AF⊥直线CD于点F,若AB=10,BC=12,则CE+CF的值为(  )

A . 22+11 B . 22﹣11 C . 22+11或22﹣11   D . 22+11或2+
3、

在平行四边形ABCD中,AC与BD相交于0,AE⊥BD于E,CF⊥BD于F,则图中的全等三角形共(  )

A . 5对 B . 6对 C . 7对 D . 8对
4、如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是(  )

①∠DCF=∠BCD;②EF=CF;③SBEC=2SCEF;④∠DFE=3∠AEF.


A . ①② B . ②③④ C . ①②④ D . ①②③④
5、已知平行四边形ABCD的对角钱AC与BD相交于点O,AB⊥AC,若AB=2,AC=8,则对角线BD的长是(  )

A . 2 B . 2 C . 4 D . 4
6、

如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不能得出BE∥DF的是(  )

A . AE=CF B . BE=DF C . ∠EBF=∠FDE   D . ∠BED=∠BFD
7、如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45°,且AE+AF=2 , 则平行四边形ABCD的周长是(  )

A . 2 B . 4 C . 4 D . 8
8、如图,在平行四边形ABCD中,对角线AC、BD相交于点O.如果BD=12,AC=10,BC=m,那么m的取值范围是(  )


A . 10<m<12 B . 2<m<22 C . 1<m<11         D . 5<m<6
9、

如图,▱ABCD中,AB=3cm,AD=6cm,∠ADC的角平分线DE交BC于点E,交AC于点F,CG⊥DE,垂足为G,DG=cm,则EF的长为(  )


A . 2cm B . cm       C . 1cm D . cm
10、如图,在平行四边形ABCD中,过对角线AC与BD的交点O作AC的垂线交AD于点E,连接CE.若AB=4,BC=6,则△CDE的周长是(  )


A . 7 B . 10 C . 11 D . 12
11、

在▱ABCD中,AC⊥AD,∠B=30°,AC=2,则▱ABCD的周长是(  )


A . 4+2 B . 8 C . 8+4 D . 16
12、如图,以平行四边形ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,则∠AEB的度数是(  )


A . 120° B . 135° C . 150° D . 45°
13、如图,在▱ABCD中,∠A=70°,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,则∠AMF等于(  )


A . 70° B . 40° C . 30° D . 20°
14、如图,在平行四边形ABCD中,AD=7,CE平分∠BCD交AD边于点E,且AE=4,则AB的长为(  )


A . 4 B . 3 C . D . 2
15、如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论:(1)∠DCF= ∠BCD,(2)EF=CF;(3)SBEC=2SCEF;(4)∠DFE=3∠AEF,其中正确结论的个数是(   )

A . 1个 B . 2个 C . 3个 D . 4个

二、填空题(共5小题)

1、

如图,在▱ABCD中,AD=4,AB=8,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是        .(结果保留π)

2、如图,在▱ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE=        

3、如图,在▱ABCD中,∠B=80°,∠ADC的角平分线DE与BC交于点E.若BE=CE,则∠DAE=      度.


4、如图,在平面直角坐标系中,四边形OABC是平行四边形,O(0,0),A(1,﹣2),B(3,1),则C点坐标为       .


5、

如图,▱ABCD中,E为AD边上一点,AE=AB,AF⊥AB,交线段BE于点F,G为AE上一点,AG:GE=1:5,连结GF并延长交边BC于点H.若GE:BH=1:2,则tan∠GHB=       .


三、解答题(共7小题)

1、

如图,平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别是E、F.求证:△ABE≌△CDF.


2、

如图,已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交CD,AB于E,F.

(1)作∠BCD的角平分线CF(尺规作图,保留痕迹,不写作法)

(2)求证:AE=CF

3、

已知ABCD是平行四边形,用尺规分别作出△BAC与△DAC共公边AC上的高BE、DF.求证:BE=DF.


4、

如图,在▱ABCD中,E为BC边上的一点,将△ABE沿AE翻折得到△AFE,点F恰好落在线段DE上.

(1)求证:∠FAD=∠CDE

(2)当AB=5,AD=6,且tan∠ABC=2时,求线段EC的长.

5、

如图,在▱ABCD中,点O是AC与BD的交点,过点O的直线EF与AB、CD的延长线分别交于点E、F.

(1)求证:△BOE≌△DOF

(2)当EF⊥AC时,四边形AECF是怎样的特殊四边形?证明你的结论

6、

已知平行四边形ABCD的对角线交于点O,点P是直线BD上任意一点(异于B、O、D三点),过P点作平行于AC的直线交直线AD于点E,交直线BA于点F,当点P在线段BD上时,易证得:AC=PE+PF(如图①所示).当点P在线段BD的延长线上(如图②所示)和当点P在线段DB的延长线上(如图③所示)两种情况时,探究线段AC、PE、PF之间的数量关系,并对图③的结论进行证明.


7、已知:如图,▱ABCD中,∠BCD的平分线交AB于点E,交侧的延长线于点F.

求证:AE=AF.

四、综合题(共1小题)

1、已知,如图,在▱ABCD中,点E在边AB上,连接CE.


(1)尺规作图(保留作图痕迹,不必写出作法);以点A为顶点,AB为一边作∠FAB=∠CEB,AF交CD于点F

(2)求证:AF=CE

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 浙教版数学八年级下册4.2平行四边形基础练习

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;