河南省商丘市柘城县2018届数学中考模拟试卷
年级: 学科:数学 类型:中考模拟 来源:91题库
一、单选题(共10小题)
1、
如图所示的几何体的俯视图是( )
A .
B .
C .
D .




2、已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是( )
A . m>1
B . m<1
C . m≥1
D . m≤1
3、已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是( )
A . m>1
B . m<1
C . m≥1
D . m≤1
4、下列各式计算正确的是( )
A . (b+2a)(2a﹣b)=b2﹣4a2
B . 2a3+a3=3a6
C . a3•a=a4
D . (﹣a2b)3=a6b3
5、现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率( )
A .
B .
C .
D .




6、某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是( )
成绩(分) | 30 | 29 | 28 | 26 | 18 |
人数(人) | 32 | 4 | 2 | 1 | 1 |
A . 该班共有40名学生
B . 该班学生这次考试成绩的平均数为29.4分
C . 该班学生这次考试成绩的众数为30分
D . 该班学生这次考试成绩的中位数为28分
7、﹣2018的绝对值是( )
A . ±2018
B . ﹣2018
C . ﹣
D . 2018

8、据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是( )
A . 55×106
B . 0.55×108
C . 5.5×106
D . 5.5×107
9、如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为( )
A . 6
B . 8
C . 10
D . 12
10、如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1 , 它与x轴交于点O,A1;将C1绕点A1旋转180°得C2 , 交x轴于点A2;将C2绕点A2旋转180°得C3 , 交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为( )
A . 4
B . ﹣4
C . ﹣6
D . 6
11、如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为( )
A . 2π﹣
B . π+
C . π+2
D . 2π﹣2




二、解答题(共8小题)
1、如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
2、先化简
,然后从﹣
<x<
的范围内选取一个合适的整数作为x的值代入求值.



3、“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
请结合图表完成下列各题:
组别 | 成绩x分 | 频数(人数) |
第1组 | 50≤x<60 | 6 |
第2组 | 60≤x<70 | 8 |
第3组 | 70≤x<80 | 14 |
第4组 | 80≤x<90 | a |
第5组 | 90≤x<100 | 10 |
(1)①表中a的值为 ,中位数在第 组;②频数分布直方图补充完整 ;
(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
4、如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为6,BC=8,求弦BD的长.
5、如图,∠AOB=90°,反比例函数y=﹣
(x<0)的图象过点A(﹣1,a),反比例函数y=
(k>0,x>0)的图象过点B,且AB∥x轴.


(1)求a和k的值;
(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=
于另一点C,求△OBC的面积.

6、某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?
(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.
7、如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=
AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.

(1)问题发现
①当θ=0°时, = ;
②当θ=180°时, = .
(2)拓展探究
试判断:当0°≤θ<360°时, 的大小有无变化?请仅就图2的情形给出证明;
(3)问题解决
①在旋转过程中,BE的最大值为 ;
②当△ADE旋转至B、D、E三点共线时,线段CD的长为 .
8、如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.
(1)求该抛物线的函数表达式;
(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;
(3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.
三、填空题(共5小题)
1、如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4
,则△CEF的周长为 .

2、如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为 .
3、
= .

4、不等式组
的非负整数解的个数是 .

5、如图,正比例函数y1=k1x和反比例函数y2=
的图象交于A(﹣1,2),B(1,﹣2)两点,若y1>y2 , 则x的取值范围是 .
