2018-2019学年数学沪科版九年级上册22.3 相似三角形的性质(1) 同步练习

年级: 学科:数学 类型:同步测试 来源:91题库

一、选择题(共8小题)

1、△ABC中,AB=12,BC=18,CA=24,另一个和它相似的三角形最长的一边是36,则最短的一边是(  )
A . 27 B . 12 C . 18 D . 20
2、一个三角形三边之比为3:5:7,与它相似的三角形的最长边为21cm,则其余两边之和为(  )
A . 24cm B . 21cm C . 13cm D . 9cm
3、若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为(  )
A . 1:2 B . 2:1 C . 1:4 D . 4:1
4、如图,△ABC∽△DEF , 相似比为1:2.若BC=1,则EF的长是(  )

_x0000_i1048

A . 1 B . 2 C . 3 D . 4
5、已知△ABC与△DEF相似且面积比为4:1,则△ABC与△DEF的对应边上的高之比为(  )
A . 4:1 B . 1:4 C . 16:1 D . 2:1
6、如果两个相似三角形对应角平分线的比为16:25,那么它们的面积比为(  )
A . 4:5 B . 16:25 C . 196:225 D . 256:625
7、相似三角形的最短边分别是5cm和3cm,它们的面积之差为 ,那么小三角形的面积为(   )
A . B . C . D .
8、如图,△ABC中,点D在线段BC上,且△ABC∽△DBA,则下列结论一定正确的是(   )

A . B . C . D .

二、填空题(共7小题)

1、已知△ABC∽△DEF,△ABC与△DEF的相似比为4:1,则△ABC与△DEF对应边上的高之比为      
2、如图,已知△ABC∽△DEF,且相似比为k,则k=      ,直线y=kx+k的图象必经过      象限.

3、已知△ABC∽△A′B′C′,∠A=50°,则∠A的对应角∠A′=      度.   
4、两个三角形相似,其中一个三角形的两个内角是40°、60°.那么另一个三角形的最大角是      度,最小角是      度.   
5、如图,矩形ABCD两邻边分别为3、4,点P是矩形一边上任意一点,则点P到两条对角线AC、BD的距离之和PE+PF为      .

6、矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数      .
7、如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间为      

三、解答题(共6小题)

1、两个相似三角形一组对应边的长分别是24cm和12cm,若它们周长的和是240cm,求这两个三角形的周长.
2、如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE∽△DEF,AB=6,AE=9,DE=2,求EF的长.

3、如图,已知△ABC中,AB=8,BC=7,AC=6,点D、E分别在AB、AC上,如果以A、D、E为顶点的三角形和△ABC相似,且相似比为 ,试求AD、AE的长.

​   

4、已知:如图,△ABC∽△ADE  , AE:EC=5:3,BC=6cm,∠A=40°,∠C=45°.


(1)求∠ADE的大小;
(2)求DE的长.
5、如图,点D、E分别在△ABC的边AB、AC上,且AB=9,AC=6,AD=3,若使△ADE与△ABC相似,求AE的长.

6、如图

(1)某学校“智慧方园”数学社团遇到这样一个题目:

如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO= ,BO:CO=1:3,求AB的长.

经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).

请回答:∠ADB=      °,AB=      

(2)请参考以上解决思路,解决问题:

如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO= ,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2018-2019学年数学沪科版九年级上册22.3 相似三角形的性质(1) 同步练习

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;