北京市昌平临川育人学校2017-2018学年高一下学期数学期末考试试卷

年级: 学科:数学 类型:期末考试 来源:91题库

一、单选题(共13小题)

1、已知某几何体的三视图如图所示,则该几何体的体积为(   )

A . B . C . D .
2、《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示(网格纸上正方形的边长为1),则该“堑堵”的表面积为(   )

A . 8 B . 16+8 C . 16+16 D . 24+16
3、数列{an}满足a1=1,an+1=3an(n∈N*),则a5等于(   )
A . 27 B . ﹣27 C . 81 D . ﹣81
4、下列图形不一定是平面图形的是( )
A . 三角形 B . 四边形 C . D . 梯形
5、如图(1)所示的几何体是由图(2)中的哪个平面图形旋转后得到的(   )


A . A B . B C . C D . D
6、如下图所示,甲、乙、丙是三个立体图形的三视图,甲、乙、丙对应的标号正确的是( )

①长方体  ②圆锥   ③三棱锥  ④圆柱

A . ④③② B . ②①③ C . ①②③ D . ③②④
7、若x>0,则 的最小值为()
A . 2 B . 3 C . D . 4
8、不等式x2﹣2x﹣3<0的解集为(     )
A . {x|﹣1<x<3} B . C . D . {x|﹣3<x<1}
9、如图是水平放置的平面图形的斜二测直观图,其原来平面图形面积是(   )
A .   B .   C . 4 D . 8
10、正方体的内切球和外接球的半径之比为(    )
A . B . C . D .
11、在棱长为1的正方体ABCD-A1B1C1D1中,若EFG分别为C1D1A A1BB1的中点,则空间四边形EFBG在正方体下底面ABCD上的射影面积为( )

A . 1 B . C . D .
12、四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h1 , h2 , h3 , h4 , 则它们的大小关系正确的是(    )

A . h2>h1>h4 B . h1>h2>h3 C . h3>h2>h4 D . h2>h4>h1
13、如图,直线AB⊥平面BCD , ∠BCD=90°,则图中直角三角形的个数为      

二、填空题(共3小题)

1、如图,棱长均为2的正四棱锥的体积为      

2、如果一个角的两边和另一个角的两边分别平行,那么这两个角      
3、如图所示的四个正方体中,AB为正方体的两个顶点,MNP分别为其所在棱的中点,能得出AB∥平面MNP的图形是      .(填序号)

三、解答题(共6小题)

1、如图,长方体ABCDABC′D′中,AB=2 AD=2 AA′=2,

(Ⅰ)求异面直线BC′ 和AD所成的角;

(Ⅱ)求证:直线BC′∥平面ADDA′.

2、已知等差数列{an}满足a3=3,前6项和为21.   

(Ⅰ)求数列{an}的通项公式;   

(Ⅱ)若bn= ,求数列{bn}的前n项和Tn

3、已知△ABC中,内角ABC依次成等差数列,其对边分别为abc , 且b = 2 asinB.

(Ⅰ)求内角C;   

(Ⅱ)若b =2,求△ABC的面积.

4、如图,在棱长为a的正方体ABCDA1B1C1D1中,MN分别是AA1D1C1的中点,过DMN三点的平面与正方体的下底面A1B1C1D1相交于直线l.


(Ⅰ)画出直线l的位置;   

(Ⅱ)设lA1B1P , 求线段PB1的长.   

5、如图,在正三棱柱ABC-A1B1C1中, DAB的中点.

(Ⅰ)求证:CD 平面ABB1A1

(Ⅱ)求证:BC1∥平面A1CD.   

6、如图,在四棱锥 中,底面ABCD是菱形,PAPB , 且侧面PAB⊥平面ABCD , 点EAB的中点.

(Ⅰ)求证:PEAD;   

(Ⅱ)若CACB , 求证:平面PEC⊥平面PAB .  

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 北京市昌平临川育人学校2017-2018学年高一下学期数学期末考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;