广东省珠海市2017-2018学年高一下学期数学期末考试试卷

年级: 学科:数学 类型:期末考试 来源:91题库

一、单选题(共12小题)

1、下列函数是奇函数的为  (     )
A . B . C . D .
2、平面向量 (     )
A . B . C . D .
3、把形状、质量、颜色等完全相同,标号分别为1,2,3,4,5,6的6个小球放入一个不透明的袋子中,从中任意抽取一个小球,记下号码为 ,把第一次抽取的小球放回去之后再从中抽取一个小球,记下号码为 ,设“乘积 ”为事件 ,则 ( )
A . B . C . D .
4、已知向量 ,若 ,则 (     )
A . B . C . D . 6
5、奥地利遗传学家孟德尔1856年用豌豆作实验时,他选择了两种性状不同的豌豆,一种是子叶颜色为黄色,种子性状为圆形,茎的高度为长茎,另一种是子叶颜色为绿色,种子性状为皱皮,茎的高度为短茎。我们把纯黄色的豌豆种子的两个特征记作 ,把纯绿色的豌豆的种子的两个特征记作 ,实验杂交第一代收获的豌豆记作 ,第二代收获的豌豆出现了三种特征分别为 ,请问,孟德尔豌豆实验第二代收获的有特征 的豌豆数量占总收成的(     )
A . B . C . D .
6、程序

读上面的程序回答:若先后输入两个数53、125,则输出的结果是(     )

A . 53  125 B . 35  521 C . 53 D . 35
7、已知 和点 满足 ,若存在实数 使 成立,则 ( )
A . 2 B . 3 C . 4 D . 5
8、为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:

①甲地该月14时的平均气温低于乙地该月14时的平均气温;

②甲地该月14时的平均气温高于乙地该月14时的平均气温;

③甲地该月14时的平均气温的标准差小于乙地该月14时的平均气温的标准差;

④甲地该月14时的平均气温的标准差大于乙地该月14时的平均气温的标准差,

其中根据茎叶图能得到的统计结论的编号为(     )

A . ①③ B . ①④ C . ②③ D . ②④
9、已知矩形 中, ,则 的值是为(     )
A . B . C . D .
10、有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经统计,得到一个卖出的热饮杯数与当天气温的对比表:

温度℃

-5

0

4

7

12

15

19

23

27

31

36

热饮杯数

156

150

132

128

130

116

104

89

93

76

54

根据上表数据确定的线性回归方程应该是(     )

A . B . C . D .
11、《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为弧田面积 ,弧田(如图所示)由圆弧和其所对的弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为 ,半径为6米的弧田,按照上述经验公式计算所得弧田面积大约是( )(     )

A . 16平方米 B . 18平方米 C . 20平方米 D . 24平方米
12、下边的程序框图是用“二分法”求方程 的近似解的算法,有下列判断:

①若 则输出的值在 之间;

②若 则程序执行完毕将没有值输出;

③若 则程序框图最下面的判断框刚好执行8次程序就结束.

其中正确命题的个数为(     )

A . 0 B . 1 C . 2 D . 3

二、填空题(共8小题)

1、        
2、11109与130663的最大公约数为       
3、一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从全体运动员中抽出一个容量为28的样本,需抽出的男运动员的人数为       
4、五进制数 转化为二进制数结果为       
5、向量 在向量 方向上的投影为      
6、天气预报说,在今后的三天中,每一天下雨的概率均为 ,某同学用随机模拟的方法确定这三天中恰有两天下雨的概率,该同学利用计算器可以产生0到9之间的取整数值的随机数,他用1,4,7表示下雨,用0,2,3,5,6,8,9表示不下雨。实验得出如下20组随机数:

245,368,590,126,217,895,560,061,378,902

542,751,245,602,156,035,682,148,357,438

请根据该同学实验的数据确定这三天中恰有两天下雨的概率为       

7、父亲节小明给爸爸从网上购买了一双运动鞋,就在父亲节的当天,快递公司给小明打电话话说鞋子已经到达快递公司了,马上可以送到小明家,到达时间为晚上6点到7点之间,小明的爸爸晚上5点下班之后需要坐公共汽车回家,到家的时间在晚上5点半到6点半之间。求小明的爸爸到家之后就能收到鞋子的概率(快递员把鞋子送到小明家的时候,会把鞋子放在小明家门口的“丰巢”中)为       
8、定义在 上的偶函数 ,当 时, ,若关于 的方程 恰好有6个不相等的实数根,则实数 的取值范围是      

三、解答题(共5小题)

1、已知 是坐标原点,向量 ,且
(1)求实数 的值;
(2)求 的面积.
2、为了了解某城市居民用水量的情况,我们获得100位居民某年的月均用水量(单位:吨)通过对数据的处理,我们获得了该100位居民月均用水量的频率分布表,并绘制了频率分布直方图(部分数据隐藏)

  100位居民月均用水量的频率分布表

组号

分组

频数

频率

1

                      

4

0.04

2

                       


0.08

3

                       

15


4

                      

22


5

                      

       


6

                      

14

0.14

7

                      

6

         

8

                    

4

0.04

9

                


0.02

合    计

100


(1)确定表中 的值;
(2)求频率分布直方图中左数第4个矩形的高度;
(3)在频率分布直方图中画出频率分布折线图;
(4)我们想得到总体密度曲线,请回答我们应该怎么做?
3、已知第二象限的角 ,并且 .
(1)化简式子 并求值;
(2)若 ,请判断实数 的符号,计算 的值.(用字母表示即可)
4、设函数 .
(1)求函数 的最小正周期;
(2)求函数 的单调递增区间及对称中心;
(3)函数 可以由 经过怎样的变换得到.
5、某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 (单位:万元)对年销售量 (单位:吨)的影响,对近六年的年宣传费 和年销售量 ( )的数据作了初步统计,得到如下数据:

年份(

2012

2013

2014

2015

2016

2017

年宣传费 (万元)

23

25

27

29

32

35

年销售量 (吨)

11

21

24

66

115

325

(1)根据散点图判断 ,哪一个更适合作为年销售量 (吨)与关于宣传费 (万元)的回归方程类型;
(2)规定当产品的年销售量 (吨)与年宣传费 (万元)的比值大于1时,认为该年效益良好,现从这6年中任选3年,记其中选到效益良好的数量为 ,试求 的所有取值情况及对应的概率;
(3)根据频率分布直方图中求出样本数据平均数的思想方法,求 的平均数.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 广东省珠海市2017-2018学年高一下学期数学期末考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;