2018-2019学年数学浙教版九年级上册1.2 二次函数的图象(3) 同步练习

年级: 学科:数学 类型:同步测试 来源:91题库

一、选择题(共10小题)

1、抛物线y=﹣ x2+ x﹣1,经过配方化成y=a(x﹣h)2+k的形式是(   )
A . B . C . D .
2、若抛物线y=x2﹣2x+m的最低点的纵坐标为n,则m﹣n的值是(   )
A . ﹣1 B . 0 C . 1 D . 2
3、抛物线 的对称轴是( )
A . 直线x=1 B . 直线x= -1 C . 直线x=-2 D . 直线x=2
4、二次函数 的范围内有最小值 ,则 的值是(   )
A . B . C . D .
5、为了得到函数y=3x2的图象,可以将函数y=﹣3x2﹣6x﹣1的图象(   )
A . 先关于x轴对称,再向右平移1个单位,最后向上平移2个单位 B . 先关于x轴对称,再向右平移1个单位,最后向下平移2个单位 C . 先关于y轴对称,再向右平移1个单位,最后向上平移2个单位 D . 先关于y轴对称,再向右平移1个单位,最后向下平移2个单位
6、抛物线y=x2﹣2x+1的顶点坐标是(    )
A . (1,0) B . (﹣1,0) C . (﹣2,1) D . (2,﹣1)
7、二次函数y=x2+2x+3的图象的开口方向为(    )
A . 向上 B . 向下 C . 向左 D . 向右
8、如图,老师出示了小黑板上的题后,小华添加的条件是过点(3,0);小彬添加的条件是过点(4,3);小明添加的条件是a=1;小颖添加的条件是抛物线被x轴截得的线段长为2.你认为四人添加的条件中,正确的有( )


A . 1个 B . 2个 C . 3个 D . 4个
9、如图,已知二次函数 的部分图象与坐标轴交于A(3,0)和C(0,2)两点,对称轴为直线 ,当函数值 >0时,自变量 的取值范围是( )

A . <3 B . 0≤ <3 C . -2< <3 D . -1< <3
10、如图,在平面直角坐标系中,边长为 的正方形 的边 轴,顶点 的坐标为 .二次函数 的图象的顶点在正方形 的边上运动,则 的值可以( ).


A . B . C . D .

二、填空题(共6小题)

1、已知二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式3﹣a﹣b的值为      
2、抛物线 的顶点坐标是      ,对称轴是      .
3、已知抛物线y=3x2﹣4x+c的顶点在x轴上方,则c应满足的条件      
4、已知抛物线y=(x﹣2)2﹣3的部分图象如图所示,若y≤0,则x的取值范围为      


5、如图,已知二次函数y=-x2+2x,当-1<x<a时,y随x的增大而增大,则实数a的取值范围是      .


6、已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1 , 则下列结论正确的是      .(写出所有正确结论的序号)①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.

三、解答题(共6小题)

1、已知抛物线y=ax2+bx+c经过(-1,0),(0,-3),(2,-3)三点.
(1)求这条抛物线的解析式;
(2)写出抛物线的开口方向、对称轴和顶点坐标.
2、已知二次函数y=﹣x2+4x.


(1)写出二次函数y=﹣x2+4x图象的对称轴;
(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线);
(3)根据图象,写出当y<0时,x的取值范围.
3、对于函数y=﹣x2﹣2x﹣1,请回答下列问题:
(1)图象的对称轴,顶点坐标各是什么?

当x取何值时,函数有最大(小)值,函数最大(小)值是多少?

(2)求抛物线与x轴的交点,与y轴的交点坐标是什么?
4、已知函数 的顶点为点D.
(1)求点D的坐标(用含m的代数式表示);
(2)求函数 的图象与x轴的交点坐标;
(3)若函数 的图象在直线y=m的上方,求m的取值范围.
5、在平面直角坐标系中,二次函数y=x2+bx+c(b,c都是常数)的图象经过点(1,0)和(0,2).
(1)当﹣2≤x≤2时,求y的取值范围.
(2)已知点P(m,n)在该函数的图象上,且m+n=1,求点P的坐标.
6、已知一次函数 (k≠0)的图象经过 两点,二次函数 (其中a>2).

(1)求一次函数的表达式及二次函数图象的顶点坐标(用含a的代数式表示);
(2)利用函数图象解决下列问题:

①若 ,求当 ≤0时,自变量x的取值范围;

②如果满足 ≤0时的自变量x的取值范围内恰有一个整数,直接写出a的取值范围.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2018-2019学年数学浙教版九年级上册1.2 二次函数的图象(3) 同步练习

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;