贵州省黔西南州2018届九年级中考数学对点突破模拟试卷(二)
年级: 学科:数学 类型:中考模拟 来源:91题库
一、单选题 (共9小题)
1、如图,两个边长分别为a,b(a>b)的正方形连在一起,三点C,B,F在同一直线上,反比例函数y=
在第一象限的图象经过小正方形右下顶点E.若OB2﹣BE2=10,则k的值是( )

A . 3
B . 4
C . 5
D . 4

2、从一副扑克牌中随机抽出一张牌,得到梅花或者K的概率是( )
A .
B .
C .
D .




3、如图,下列图形均是完全相同的点按照一定的规律所组成的,第①个图形中一共有3个点,第②个图形中一共有8个点,第③个图形中一共有15个点,…,按此规律排列下去,第9个图形中点的个数是( )
A . 80
B . 89
C . 99
D . 109
4、如图,下列图形从正面看是三角形的是( )
A .
B .
C .
D .




5、–2的相反数是( )
A . 2
B .
C . –2
D . 以上都不对

6、已知一组数据:x1 , x2 , x3 , x4 , x5 , x6的平均数是2,方差是3,则另一组数据:3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2,3x6﹣2的平均数和方差分别是( )
A . 2,3
B . 2,9
C . 4,25
D . 4,27
7、若(m+n)2=11,(m﹣n)2=3,则(mn)﹣2=( )
A . ﹣
B .
C . ﹣
D .




8、如图,△ABC中,AB=AC=15,D在BC边上,DE∥BA于点E,DF∥CA交AB于点F,那么四边形AFDE的周长是( )
A . 30
B . 25
C . 20
D . 15
9、已知⊙O的半径为10,P为⊙O内一点,且OP=6,则过P点,且长度为整数的弦有( )
A . 5条
B . 6条
C . 8条
D . 10条
二、填空题 (共10小题)
1、正方形ABCD中,F是AB上一点,H是BC延长线上一点,连接FH,将△FBH沿FH翻折,使点B的对应点E落在AD上,EH与CD交于点G,连接BG交FH于点M,当GB平分∠CGE时,BM=2
,AE=8,则ED= .

2、已知函数
,则x取值范围是 .

3、大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成 个.
4、据国家考试中心发布的信息,我国今年参加高考的考生数达11600000人,这个数据用科学记数法且保留两个有效数字可表示为 人.
5、若不等式组
无解,则m的取值范围是 .

6、若一组数据6,7,5,6,x,1的平均数是5,则这组数据的众数是 .
7、已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是 .
8、如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是 .
9、已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为 .
10、二次函数
(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y1),Q(
,y2)是函数图象上的两点,则y1>y2;③a=﹣
c;④若△ABC是等腰三角形,则b=﹣
.其中正确的有 (请将结论正确的序号全部填上)




三、解答题 (共6小题)
1、抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:
(1)本次抽样调查共抽取了多少名学生?
(2)求测试结果为C等级的学生数,并补全条形图;
(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?
(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.
2、A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1 , L2分别表示两辆汽车的s与t的关系?
(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?
(2)汽车B的速度是多少?
(3)求L1 , L2分别表示的两辆汽车的s与t的关系式.
(4)2小时后,两车相距多少千米?
(5)行驶多长时间后,A、B两车相遇?
3、
(1)计算|﹣
|+
×(
)﹣1﹣2cos45°﹣(π﹣1)0



(2)解分式方程:
﹣3=


4、如图,已知,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点D,连结OE,AC,且∠P=∠E,∠POE=2∠CAB.
(1)求证:CE⊥AB;
(2)求证:PC是⊙O的切线;
(3)若BD=2OD,且PB=9,求⊙O的半径长和tan∠P的值.
5、如图,ABCD为正方形,E为BC上一点,将正方形折叠,使A点与E点重合,折痕为MN,若tan∠AEN=
,DC+CE=10.

(1)求△ANE的面积;
(2)求sin∠ENB的值.
6、已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.