湖北省孝感市八校教学联盟2017-2018学年高二下学期理数期中联合考试试卷
年级: 学科:数学 类型:期中考试 来源:91题库
一、单选题(共12小题)
1、抛物线
的焦点坐标为( )

A .
B .
C .
D .




2、命题“对任意的
”的否定是( )

A . 不存在
B . 存在
C . 存在
D . 对任意的




3、命题“若
是偶数,则
都是偶数”的否命题是( )


A . 若
不是偶数,则
都不是偶数
B . 若
不是偶数,则
不都是偶数
C . 若
是偶数,则
不都是偶数
D . 若
是偶数,则
都不是偶数








4、如果方程
表示双曲线,则实数
的取值范围是( )


A .
B .
C .
D .




5、已知
,则“
”是“
”的( )



A . 充分不必要条件
B . 必要不充分条件
C . 充要条件
D . 既不充分也不必要条件
6、在正方体
中,点
,
分别是
,
的中点,则异面直线
与
所成角的大小是( )







A .
B .
C .
D .




7、如图,在空间四边形
中,点
为
中点,点
在
上,且
, 则
等于( )







A .
B .
C .
D .




8、圆
与双曲线
的渐近线相切,则双曲线的离心率为( )


A .
B .
C .
D .




9、已知抛物线
的焦点为
,过点
且斜率为
的直线交抛物线于
两点,则线段
的中点到
轴的距离为( )







A .
B .
C .
D .




10、已知椭圆
上的一点
到焦点F1的距离为
,点
是
的中点,
为坐标 原点,则
等于( )







A . 2
B . 4
C . 7
D .

11、已知双曲线
,过点
作直线
与双曲线交于
两点,使点
是线段
的中点,那么直线
的方程为( )







A .
B .
C .
D . 不存在



12、已知
分别是椭圆
的左、右焦点,点
是椭圆上一点,
为
的内心,若
,则该椭圆的离心率是( )






A .
B .
C .
D .




二、填空题(共4小题)
1、命题“若
或
,则
”的逆命题是 命题(填“真”或“假”).



2、已知空间三点
,
,
,则以
,
为邻边的平行四边形的面积为 .





3、已知抛物线
的焦点为
,点
为抛物线
上任意一点,若点
,则
的最小值为






4、已知点
,点B是圆F:
(F为圆心)上一动点,线段AB的垂直平分线交
于点
,则动点
的轨迹方程为 .





三、解答题(共6小题)
1、已知F1、F2分别是双曲线
的左、右焦点,且双曲线C的实轴长为6,离心率为
.


(1)求双曲线C的标准方程;
(2)设点P是双曲线C上任意一点,且|PF1|=10,求|PF2|.
2、已知命题
函数
在
上是减函数,命题
,
.






(1)若
为假命题,求实数
的取值范围;


(2)若“
或
”为假命题,求实数
的取值范围.



3、如图,四面体
中,△
是边长为
的等边三角形,平面
平面
,
,点
、
分别是
、
的中点.










(1)求证:
平面
;


(2)求点
到平面
的距离.


4、已知椭圆
,四点
,
,
,
中恰有两个点为椭圆
的顶点,一个点为椭圆
的焦点.







(1)求椭圆
的方程;

(2)若斜率为1的直线
与椭圆
交于不同的两点
,且
,求直线
方程.





5、如图,四边形
是矩形,四边形
是梯形,
,平面
平面
,
, 点
是
的中点.








(1)求证:
∥平面
;


(2)求二面角
的余弦值.

6、已知抛物线
的准线方程为
,点
为坐标原点,不过点
的直线
与抛物线
交于不同的两点
.







(1)如果直线
过点
,求证:
;



(2)如果
,证明:直线
必过一定点,并求出该定点.

