2017-2018学年北师大版数学九年级下册同步训练:2.4.1 二次函数的应用
年级:九年级 学科:数学 类型:同步测试 来源:91题库
一、选择题(共10小题)
1、军事演习时发射一颗炮弹,经xs后炮弹的高度为ym,且时间x(s)与高度y(m)之间的函数关系为y=ax2+bx(a≠0),若炮弹在第8s与第14s时的高度相等,则在下列哪一个时间的高度是最高的( )
A . 第9s
B . 第11s
C . 第13s
D . 第15s
2、一个网球发射器向空中发射网球,网球飞行的路线呈一条抛物线,如果网球距离地面的高度h(米)关于运行时间t(秒)的函数解析式为h=﹣
t2+
t+1(0≤t≤20),那么网球到达最高点时距离地面的高度是( )


A . 1米
B . 1.5米
C . 1.6米
D . 1.8米
3、一位篮球运动员跳起投篮,篮球运行的高度y(米)关于篮球运动的水平距离x(米)的函数解析式是y=﹣
(x﹣2.5)2+3.5.已知篮圈中心到地面的距离3.05米,如果篮球运行高度达到最高点之后能准确投入篮圈,那么篮球运行的水平距离为( )

A . 1米
B . 2米
C . 4米
D . 5米
4、为搞好环保,某公司准备修建一个长方体的污水处理池,池底矩形的周长为100m,则池底的最大面积是( )
A . 600 m2
B . 625 m2
C . 650 m2
D . 675 m2
5、烟花厂为雁荡山旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣
t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )

A . 3s
B . 4s
C . 5s
D . 6s
6、如图,一场篮球赛中,篮球运动员跳起投篮,已知球出手时离地面高2.2m,与篮圈中心的水平距离为8m,当球出手后水平距离为4m时达到最大高度4m,篮圈运行的轨迹为抛物线的一部分,篮圈中心距离地面3m,运动员发现未投中,若假设出手的角度和力度都不变,要使此球恰好通过篮圈中心,运动员应该跳得( )
A . 比开始高0.8m
B . 比开始高0.4m
C . 比开始低0.8m
D . 比开始低0.4m
7、足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:
t | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … |
h | 0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t= ;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m.其中正确结论的个数是( )
A . 1
B . 2
C . 3
D . 4
8、如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=﹣
x2+
x+
,则该运动员此次掷铅球的成绩是( )



A . 6m
B . 12m
C . 8m
D . 10m
9、飞机着陆后滑行的距离s(米)关于滑行的时间t(米)的函数解析式是s=60t﹣1.5t2 , 则飞机着陆后滑行到停止下列,滑行的距离为( )
A . 500米
B . 600米
C . 700米
D . 800米
10、如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与O点的水平距离为6m时,达到最高2.6m,球网与O点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )
A . 球不会过网
B . 球会过球网但不会出界
C . 球会过球网并会出界
D . 无法确定
二、填空题(共6小题)
1、某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是 m.
2、用一根长为16cm的铁丝围成一个矩形,则围成矩形面积的最大值是 cm2 .
3、飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t﹣
t2 , 则飞机着陆后滑行的最长时间为 秒.

4、如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上,C点在斜边上,设矩形的一边AB=xm,矩形的面积为ym2 , 则y的最大值为 .
5、已知:如图,用长为18m的篱笆(3AB+BC),围成矩形花圃.一面利用墙(墙足够长),则围成的矩形花圃ABCD的占地面积最大为 m2 .
6、张力同学在校运动会上投掷标枪,标枪运行的高度h(m)与水平距离x(m)的关系式为h=﹣
x2+
x+2,则大力同学投掷标枪的成绩是 m.


三、解答题(共2小题)
1、为了改善小区环境,某小区决定要在一块一边靠墙(墙长 25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为 40m 的栅栏围住(如图).设绿化带的BC 边长为x m,绿化带的面积为y m2 .
(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围.
(2)当x 为何值时,满足条件的绿化带的面积最大?
2、某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).
(1)如图1,问饲养室长x为多少时,占地面积y最大?
(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.