人教版数学八年级下学期平行四边形单元试卷

年级:八年级 学科:数学 类型:单元试卷 来源:91题库

一、单选题(共11小题)

1、顺次连结矩形四边中点所得的四边形一定是(   )
A . 菱形 B . 矩形 C . 正方形 D . 等腰梯形
2、

在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图,该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA。若∠ACB=21°,则∠ECD的度数是(    )

A . B . 21° C . 23° D . 24°
3、

如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD、CD于G、F两点.若M、N分别是DG、CE的中点,则MN的长为   (       )

A . 3 B . C . D . 4
4、如图,已知凸五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,则BD必定满足(   )

A . BD<2 B . BD=2 C . BD>2 D . 以上情况均有可能
5、下列性质中菱形不一定具有的性质是(   )
A . 对角线互相平分 B . 对角线互相垂直 C . 对角线相等 D . 既是轴对称图形又是中心对称图形
6、如图,在△ABC中,AB=AC,E,F分别是BC,AC的中点,以AC为斜边作Rt△ADC,若∠CAD=∠CAB=45°,则下列结论不正确的是(   )

A . ∠ECD=112.5° B . DE平分∠FDC C . ∠DEC=30° D . AB= CD
7、将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AB=3,则菱形AECF的面积为(   )

A . 1 B . C . D . 4
8、如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为(   )

A . 5 B . C . D .
9、如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为点G,连接CG,下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值 ﹣1.其中正确的说法有(   )个.

A . 4 B . 3 C . 2 D . 1
10、如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为      

11、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2 , 则S1+S2的值为(    )

A . 17 B . 18 C . 19 D . 20

二、综合题(共12小题)

1、

如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.


(1)观察猜想

图1中,线段PM与PN的数量关系是      ,位置关系是      

(2)

探究证明

把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;


(3)拓展延伸

把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.

2、如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE= AC,连接AE交OD于点F,连接CE、OE.

(1)求证:OE=CD;
(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.
3、如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.

(1)求证:四边形EDFG是正方形;
(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.
4、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。

(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系并说明理由;
(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。
5、如图,在长方形 中, ,点 从点 出发,以 的速度沿 向点 运动,设点 的运动时间为 秒:
(1)        .(用 的代数式表示)
(2)   为何值时,   
(3)当点 从点 开始运动,同时,点 从点 出发,以 v 的速度沿 向点 运动,是否存在这样的v 值,使得 全等?若存在,请求出 v的值;若不存在,请说明理由.
6、ABCD中,E是CD边上一点,
(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是       ,∠AFB=∠       .

(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ.

(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2

7、如图,在正方形ABCD中,AB=BC=CD=AD,∠BAD=∠B=∠C=∠D=90°,点E、F分别在正方形ABCD的边DC、BC上,AG⊥EF且 AG=AB,垂足为G,则:

(1)△ABF与△ AGF全等吗?说明理由;
(2)求∠EAF的度数;
(3)若AG=4,△AEF的面积是7,求△CEF的面积.
8、已知:如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.


(1)求证:△ADC≌△ECD;
(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.
9、在图1﹣﹣图4中,菱形ABCD的边长为3,∠A=60°,点M是AD边上一点,且DM= AD,点N是折线AB﹣BC上的一个动点.

(1)如图1,当N在BC边上,且MN过对角线AC与BD的交点时,则线段AN的长度为      
(2)当点N在AB边上时,将△AMN沿MN翻折得到△A′MN,如图2,

①若点A′落在AB边上,则线段AN的长度为      

②当点A′落在对角线AC上时,如图3,求证:四边形AM A′N是菱形;      

③当点A′落在对角线BD上时,如图4,求 的值.      

10、已知,正方形ABCD的边长为6,菱形EFGH的三个顶点E、G、H 分别在正方形ABCD边AB、CD、DA上,AH=2.
(1)如图1,当DG=2,且点F在边BC上时.

求证:① △AHE≌△DGH;

② 菱形EFGH是正方形;

(2)如图2,当点F在正方形ABCD的外部时,连接CF.

① 探究:点F到直线CD的距离是否发生变化?并说明理由;

② 设DG=x,△FCG的面积为S,是否存在x的值,使得S=1,若存在,求出x的值;若不存在,请说明理由.

11、在边长为2的正方形ABCD中,点P、Q分别是边AB、BC上的两个动点(与点A、B、C不重合),且始终保持BP=BQ,AQ⊥QE,QE交正方形外角平分线CE于点E,AE交CD于点F,连结PQ.

(1)求证:△APQ≌△QCE;
(2)求∠QAE的度数;
(3)设BQ=x,当x为何值时,QF∥CE,并求出此时△AQF的面积.
12、如图,已知tan∠EOF=2,点C在射线OF上,OC=12.点M是∠EOF内一点,MC⊥OF于点C,MC=4.在射线CF上取一点A,连结AM并延长交射线OE于点B,作BD⊥OF于点D.

(1)当AC的长度为多少时,△AMC和△BOD相似;
(2)当点M恰好是线段AB中点时,试判断△AOB的形状,并说明理由;
(3)连结BC.当SAMC=SBOC时,求AC的长.

三、填空题(共3小题)

1、如图,在菱形ABCD中,∠BAC=60°,AC与BC交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC、AD于点F、G,连接OG,则下列结论中一定成立的是      .(把所有正确结论的序号都填在横线上)

①OG= AB;

②与△EGD全等的三角形共有5个;

③S四边形CDGF>SABF

④由点A、B、D、E构成的四边形是菱形.

2、如图,已知∠MON=30°,B为OM上一点,BA⊥ON于A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连结BE,若AB=4,则BE的最小值为      


3、有一块边长为4的正方形ABCD,将一块足够大的直角三角板如图放置, CB延长线与直角边交于点E.则四边形AECF的面积是      


四、解答题(共4小题)

1、

如图, 的中线, 是线段 上一点(不与点 重合). 于点 ,连结

(1)如图1,当点 重合时,求证:四边形 是平行四边形;

(2)如图2,当点 不与 重合时,(1)中的结论还成立吗?请说明理由.

(3)如图3,延长 于点 ,若 ,且

①求 的度数;

②当 时,求 的长.

2、

如图1,已知ABCD,AB//x轴,AB=6,点A的坐标为(1,-4),点D的坐标为(-3,4),点B在第四象限,点P是ABCD边上的一个动点.

 

(1)若点P在边BC上,PD=CD,求点P的坐标.

(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x-1上,求点P的坐标.

(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标(直接写出答案).

3、

已知正方形 的对角线 相交于点

(1)如图1, 分别是 上的点, 的延长线相交于点 .若 ,求证:

(2)如图2, 上的点,过点 ,交线段 于点 ,连结 于点 ,交 于点 .若

①求证:

②当 时,求 的长.

4、如图,已知菱形BEDF,内接于△ABC,点E,D,F分别在AB,AC和BC上.若AB=15cm,BC=12cm,求菱形边长.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 人教版数学八年级下学期平行四边形单元试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;