难点二 导数与不等式相结合问题
年级:高考 学科:数学 类型: 来源:91题库
一、单选题(共12小题)





























二、填空题(共4小题)









三、解答题(共4小题)
(Ⅰ)当a=1时,求函数f(x)的图象在x=1处的切线方程;
(Ⅱ)若f(x)≤1恒成立,求a的取值范围;
(Ⅲ)设g(x)=f(x)+ x2 , 且函数g(x)有极大值点x0 , 求证:x0f(x0)+1+ax02>0.

(Ⅰ)求a的取值范围;
(Ⅱ)若不等式xf(x)+e>2﹣a对于x>0的一切值恒成立,求a的取值范围.

(I)求函数f(x)的单调区间;
(II)若不等式f(x)> 恒成立,求整数k的最大值;
(III)求证:(1+1×2)•(1+2×3)…(1+n(n×1))>e2n﹣3(n∈N*).
(Ⅰ)当a=5时,求f(x)的单调区间;
(Ⅱ)设A(x1 , y1),B(x2 , y2)是曲线y=f(x)图象上的两个相异的点,若直线AB的斜率k>1恒成立,求实数a的取值范围;
(Ⅲ)设函数f(x)有两个极值点x1 , x2 , x1<x2且x2>e,若f(x1)﹣f(x2)≥m恒成立,求实数m的取值范围.