江苏盐城景山中学2016届九年级上学期数学期末考试试卷

年级:九年级 学科:数学 类型:期末考试 来源:91题库

一、单选题(共8小题)

1、在Rt△ABC中,∠C=90°,如果把Rt△ABC的各边的长都缩小为原来的 , 则∠A的正切值(  )


A . 缩小为原来的 B . 扩大为原来的4倍 C . 缩小为原来的 D . 没有变化
2、已知四条线段满足a= , 将它改写成为比例式,下面正确的是(  )

A . = B . = C . = D . =
3、一组数据2、5、4、3、5、4、5的中位数和众数分别是(  )

A . 3.5,5 B . 4,4 C . 4,5 D . 4.5,4
4、一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是( )

A . B . C . D . 1
5、

如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴只有一个交点M,与平行于x轴的直线l交于A、B两点,若AB=3,则点M到直线l的距离为(  )

A . B . C . 2 D .
6、在抛物线y= ﹣4x﹣4上的一个点是(   ).
A . (4,4) B . C . (3,﹣1) D . (﹣2,﹣8)
7、如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“1”和“4”(单位:cm),则该圆的半径为(   ).

A . 5cm B . cm C . cm D . cm
8、已知二次函数y= +bx+c的图象如图所示,对称轴为直线x=1.有位学生写出了以下五个结论:①ac>0;②方程ax2+bx+c=0的两根是 =﹣1, =3;③2a﹣b=0;④当x>1时,y随x的增大而减小;则以上结论中正确的有(   ).

A . 1个 B . 2个 C . 3个 D . 4个

二、填空题(共10小题)

1、已知△ABC与△DEF相似且周长比为2:5,则△ABC与△DEF的相似比为       

2、一元二次方程x2﹣x=0的根是       

3、随机从甲、乙两块试验田中各抽取100株麦苗测量高度,甲、乙两块试验田的平均数都是13,方差结果为:S2=36,S2=158,则小麦长势比较整齐的试验田是       

4、已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积为       

5、

如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是       

6、已知a是方程2x2+3x﹣6=0的一个根,则代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值为       

7、△ABC中,AD是BC边上的高,BD=3,CD=1,AD=2,P、Q、R分别是BC、AB、AC边上的动点,则△PQR周长的最小值为       

8、小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖除颜色外完全相同,它最终停留在黑色方砖上的概率是      

9、如图,⊙O与正方形ABCD的两边AB、AD相切,且DE与⊙O相切于E点.若正方形ABCD的周长为44,且DE=6,则sin∠ODE=      

10、若A( ),B( ),C(1, )为二次函数y= +4x﹣5的图象上的三点,则 的大小关系是      

三、解答题(共10小题)

1、计算题       
(1)计算:tan260°+4sin30°•cos45°;
(2)解方程: ﹣4x+3=0.
2、作图题:如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).

(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;
(2)分别写出B、C两点的对应点B′、C′的坐标.
3、A,B,C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表和图1:

竞选人

A

  B

  C

笔试

 85

 95

 90

口试


 80

 85

(1)请将表和图1中的空缺部分补充完整.
(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图2(没有弃权票,每名学生只能推荐一个),则B在扇形统计图中所占的圆心角是      度.
(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.
4、一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.
(1)从中任意摸出1个球,恰好摸到红球的概率是      
(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.
5、如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点,过点B作BE∥AD,交⊙O于点E,连接ED.

(1)求证:ED∥AC;
(2)连接AE,试证明:AB•CD=AE•AC.
6、某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5, ≈1.7)

7、如图,抛物线y= +bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C(0,﹣3).

(1)求抛物线的解析式;
(2)D是y轴正半轴上的点,OD=3,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,

①试说明EF是圆的直径;

②判断△AEF的形状,并说明理由.

8、公司投资750万元,成功研制出一种市场需求量较大的产品,并再投入资金1750万元进行相关生产设备的改进.已知生产过程中,每件产品的成本为60元.在销售过程中发现,当销售单价定为120元时,年销售量为24万件;销售单价每增加10元,年销售量将减少1万件.设销售单价为x(元)(x>120),年销售量为y(万件),第一年年获利(年获利=年销售额﹣生产成本)为z(万元).
(1)求出y与x之间,z与x之间的函数关系式;
(2)该公司能否在第一年收回投资.
9、如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,

DE与AB相交于点E.

(1)求证:AB•AF=CB•CD;
(2)已知AB=15cm,BC=9cm,P是线段DE上的动点.设DP=x cm,梯形BCDP的面积为y

①求y关于x的函数关系式.

②y是否存在最大值?若有求出这个最大值,若不存在请说明理由.

10、如图,二次函数y= +bx﹣ 的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.

(1)b=      ;点D的坐标:      
(2)线段AO上是否存在点P(点P不与A、O重合),使得OE的长为1;
(3)在x轴负半轴上是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 江苏盐城景山中学2016届九年级上学期数学期末考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;