江苏省扬州市梅岭中学2015-2016学年八年级上学期数学期末考试试卷
年级:八年级 学科:数学 类型:期末考试 来源:91题库
一、单选题(共9小题)
1、估算
的值是( )

A . 在1和2之间
B . 在2和3之间
C . 在3和4之间
D . 在4和5之间
2、
如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了( )
A . 2cm
B . 3cm
C . 4cm
D . 5cm
3、如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是( )
A . ∠M=∠N
B . AM=CN
C . AB=CD
D . AM∥CN
4、
如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1 , 则a+b的值为( )
A . 2
B . 3
C . 4
D . 5
5、如图,已知1号、4号两个正方形的面积和为10, 2号、3号两个正方形的面积和为7,则a,b,c三个方形的面积和为( )
A . 17
B . 27
C . 24
D . 34
6、下图中,既是轴对称图形又是中心对称图形的有( )
A . 1个
B . 2个
C . 3个
D . 4个
7、下列数中,是无理数的是( )
A . ﹣
B .
C . ﹣2.171171117
D .



8、给出下列判断:
①一组对边平行,另一组对边相等的四边形是平行四边形;
②对角线相等的四边形是矩形;
③对角线互相垂直且相等的四边形是正方形;
④有一条对角线平分一个内角的平行四边形为菱形.
其中,不正确的有( )
A . 1个
B . 2个
C . 3个
D . 4个
9、如图所示,在△ABC中,∠BAC=90°,AB⊥AC,AB=3,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是 .
二、填空题(共9小题)
1、函数
的图象上存在点P , 点P到x轴的距离等于3,则点P的坐标为 .

2、4是 的算术平方根.
3、已知等腰三角形的一个外角是70°,则它顶角的度数为 .
4、如图,在平面直角坐标系中,一个点从A(a1 , a2)出发沿图中路线依次经过B(a3 , a4),C(a5 , a6),D(a7 , a8),…,按此一直运动下去,则a2015+a2016的值为 .
5、已知点P(a,3)在一次函数y=x+1的图象上,则a= .
6、扬州市瘦西湖风景区2015年某月的接待游客的人数约809700人次,将这个数字用科学记数法表示为(精确到万位) .
7、一次函数y=ax+b的图象如图,则关于x的不等式ax+b≥0的解集为 .
8、如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣1),白棋③的坐标是(﹣1,﹣3),则黑棋②的坐标是 .
9、已知a、b、c是△ABC的三边长且c=5,a、b满足关系式
+(b﹣3)2=0,则△ABC的形状为 三角形.

三、解答题(共10小题)
1、已知y与x+1成正比例,当x=1时,y=3,求y与x的函数关系式.
2、计算题
(1)计算:|﹣3|+(π+1)0﹣

(2)解方程:4(x﹣1)2﹣9=0.
3、如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.
(1)在网格的格点中,找一点C,使△ABC是直角三角形,且三边长均为无理数(只画出一个,并涂上阴影);
(2)若点P在图中所给网格中的格点上,△APB是等腰三角形,满足条件的点P共有 个;
(3)若将线段AB绕点A顺时针旋转90°,写出旋转后点B的坐标 .
4、如图,一块四边形草地ABCD,其中∠B=90°,AB=4m,BC=3m,AD=12m,CD=13cm,求这块草地的面积.
5、如图,已知E、F分别为平行四边形ABCD的对边AD、BC上的点,且DE=BF,EM⊥AC于M,FN⊥AC于N,EF交AC于点O,求证:
(1)EM=FN;
(2)EF与MN互相平分.
6、如图,∠AOB=90°,OA=90cm,OB=30cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?
7、如图,直线l1的函数表达式为y1=﹣3x+3,且l1与x轴交于点D,直线l2:y2=kx+b经过点A,B,与直线l1交于点C.
(1)求直线l2的函数表达式及C点坐标;
(2)求△ADC的面积;
(3)当x满足何值时,y1>y2;(直接写出结果)
(4)在直角坐标系中有点E,和A,C,D构成平行四边形,请直接写出E点的坐标.
8、近年来,我国多个城市遭遇雾霾天气,空气中可吸入颗粒(又称PM2.5)浓度升高,为应对空气污染,小强家购买了空气净化器,该装置可随时显示室内PM2.5的浓度,并在PM2.5浓度超过正常值25(mg/m3)时吸收PM2.5以净化空气.随着空气变化的图象(如图),请根据图象,解答下列问题:
(1)写出题中的变量;
(2)写出点M的实际意义;
(3)求第1小时内,y与t的一次函数表达式;
(4)已知第5﹣6小时是小强妈妈做晚餐的时间,厨房内油烟导致PM2.5浓度升高.若该净化器吸收PM2.5的速度始终不变,则第6小时之后,预计经过多长时间室内PM2.5浓度可恢复正常?
9、如图1,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA上的点,HA=EB=FC=GD,连接EG,FH,交点为O.
(1)如图2,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;
(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD的边长为3cm,HA=EB=FC=GD=1cm,则图3中阴影部分的面积为 cm2 .
10、在直角坐标系xOy中,▱ABCD四个顶点的坐标分别为A(1,1),B(4,1),C(5,2),D(2,2),直线l:y=kx+b与直线y=﹣2x平行.
(1)k= ;
(2)若直线l过点D,求直线l的解析式;
(3)若直线l同时与边AB和CD都相交,求b的取值范围;
(4)若直线l沿线段AC从点A平移至点C,设直线l与x轴的交点为P,问是否存在一点P,使△PAB为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.