北京市东城区2016-2017学年高一上学期数学期末考试试卷
年级:高一 学科:数学 类型:期末考试 来源:91题库
一、选择题(共12小题)
1、已知集合M={x∈R|x2+2x=0},N={2,0},则M∩N=( )
A . {0}
B . {2}
C . ∅
D . {﹣2,0,2}
2、若一个扇形的弧长是3,半径是2,则该扇形的圆心角为( )
A .
B .
C . 6
D . 7


3、设x∈R,向量
=(3,x),
=(﹣1,1),若
⊥
,则|
|=( )





A . 6
B . 4
C .
D . 3

4、二次函数f(x)=ax2+bx+1的最小值为f(1)=0,则a﹣b=( )
A . ﹣2
B . ﹣1
C . 1
D . 3
5、设点O是平行四边形ABCD两条对角线的交点,给出下列向量组:
① 与
;
② 与
;
③ 与
;
④ 与
.
其中可作为该平面其他向量基底的是( )
A . ①②
B . ①③
C . ①④
D . ③④
6、已知函数f(x)=|x﹣1|,则与y=f(x)相等的函数是( )
A . g(x)=x﹣1
B .
C .
D .



7、已知
,
,c=log35,则( )


A . c>b>a
B . b>c>a
C . a>b>c
D . c>a>b
8、已知函数
,若g(x)=f(x)﹣m为奇函数,则实数m的值为( )

A . ﹣3
B . ﹣2
C . 2
D . 3
9、某商场在2017年元旦开展“购物折上折”活动,商场内所有商品先按标价打八折,折后价格每满500元再减100元,如某商品标价1500元,则购买该商品的实际付款额为1500×0.8﹣200=1000元.设购买某商品的实际折扣率=
,某人欲购买标价为2700元的商品,那么他可以享受的实际折扣率约为( )

A . 55%
B . 65%
C . 75%
D . 80%
10、将函数
的图象上所有点向左平行移动
个单位长度,得到函数g(x)的图象,则g(x)图象的一条对称轴的方程是( )


A .
B .
C .
D .




11、若函数y=f(x)的定义域为{x|﹣2≤x≤3,且x≠2},值域为{y|﹣1≤y≤2,且y≠0},则y=f(x)的图象可能是( )
A .
B .
C .
D .




12、关于x的方程
(a>0,且a≠1)解的个数是( )

A . 2
B . 1
C . 0
D . 不确定的
二、填空题(共6小题)
1、函数
的定义域为 .

2、已知角α为第四象限角,且
,则sinα= ;tan(π﹣α)= .

3、已知9a=3,lnx=a,则x= .
4、已知向量|
|=2,|
|=3,|
+
|=
,那么|
﹣
|= .







5、已知
,且满足
,则sinαcosα= ;sinα﹣cosα= .


6、已知函数
若存在x1 , x2∈R,x1≠x2 , 使f(x1)=f(x2)成立,则实数a的取值范围是 .

三、解答题(共4小题)
1、已知全集U=R,集合A={x∈R|2x﹣3≥0},B={x|1<x<2},C={x∈N|1≤x<a}.
(Ⅰ)求A∪B;
(Ⅱ)若C中恰有五个元素,求整数a的值;
(Ⅲ)若A∩C=∅,求实数a的取值范围.
2、已知函数
与g(x)=cos(2x+φ)
,它们的图象有一个横坐标为
的交点.



(Ⅰ)求φ的值;
(Ⅱ)将f(x)图象上所有点的横坐标变为原来的 倍,得到h(x)的图象,若h(x)的最小正周期为π,求ω的值和h(x)的单调递增区间.
3、已知函数f(x)=kx2+2x为奇函数,函数g(x)=af(x)﹣1(a>0,且a≠1).
(Ⅰ)求实数k的值;
(Ⅱ)求g(x)在[﹣1,2]上的最小值.
4、已知函数f(x),定义 

(Ⅰ)写出函数F(2x﹣1)的解析式;
(Ⅱ)若F(|x﹣a|)+F(2x﹣1)=0,求实数a的值;
(Ⅲ)当 时,求h(x)=cosx•F(x+sinx)的零点个数和值域.