江西省赣州市2016-2017学年高一下学期期末数学考试试卷

年级:高一 学科:数学 类型:期末考试 来源:91题库

一、选择题(共12小题)

1、△ABC中,AB= , AC=1,∠B=30°则△ABC的面积等于(  )

A . B . C . D .
2、已知点A(﹣2,0),B(0,4),点P在圆C:(x﹣3)2+(y﹣4)2=5上,则使∠APB=90°的点P的个数为(  )

A . 0 B . 1 C . 2 D . 3
3、如果a>0>b且a+b>0,那么以下不等式正确的个数是(   )

①a2b<b3;② >0> ;③a3<ab2;④a3>b3

A . 1 B . 2 C . 3 D . 4
4、若直线(a+1)x﹣y+1﹣2a=0与(a2﹣1)x+(a﹣1)y﹣15=0平行,则实数a的值等于(   )
A . 1或﹣1 B . 1 C . ﹣1 D . 不存在
5、已知数列1,a1 , a2 , 4成等差数列,1,b1 , b2 , b3 , 4成等比数列,则 的值是(   )
A . B . C . 或﹣ D .
6、已知等差数列{an}的前n项和为Sn , 且S2=4,S4=16,数列{bn}满足bn=an+an+1 , 则数列{bn}的前9和T9为(   )
A . 20 B . 80 C . 166 D . 180
7、已知函数 ,则不等式f(x)≥x2的解集是(   )
A . [﹣1,1] B . [﹣2,2] C . [﹣2,1] D . [﹣1,2]
8、已知点(1,﹣2)和( ,0)在直线l:ax﹣y﹣1=0(a≠0)的两侧,则直线l的倾斜角的取值范围是(   )
A . B . C . D . (0, )∪( ,π)
9、数列1, ,…, 的前n项和为(   )
A . B . C . D .
10、已知直线x+y=a与圆x2+y2=4交于A、B两点,O是坐标原点,向量 满足 ,则实数a的值(   )
A . 2 B . ﹣2 C . 或﹣ D . 2或﹣2
11、设函数f(x)是定义在(﹣∞,+∞)上的增函数,实数a使得f(1﹣ax﹣x2)<f(2﹣a)对于任意x∈[0,1]都成立,则实数a的取值范围是(   )
A . (﹣∞,1) B . [﹣2,0] C . (﹣2﹣2 ,﹣2+2 D . [0,1]
12、如图所示,D是△ABC的边AB上的中点,记 = = ,则向量 =(   )

A . B . + C . D . +

二、填空题(共4小题)

1、△ABC中,已知A(﹣1,2),B(3,4),C(0,3),则AB边上的高CH所在直线的方程为      
2、设x、y满足约束条件 取值范围      
3、G在△ABC所在平面上有一点P,满足 + + = ,则△PAB与△ABC的面积之比为      
4、△ABC的三个内角A,B,C的对边长分别为a,b,c,R是△ABC的外接圆半径,有下列四个条件:

⑴(a+b+c)(a+b﹣c)=3ab

⑵sinA=2cosBsinC

⑶b=acosC,c=acosB

有两个结论:甲:△ABC是等边三角形.乙:△ABC是等腰直角三角形.

请你选取给定的四个条件中的两个为条件,两个结论中的一个为结论,写出一个你认为正确的命题      

三、解答题(共6小题)

1、设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且与直线x﹣y+1=0相交的弦长为2 ,求圆的方程.
2、已知向量 =(3,4), =(﹣1,2).
(1)求向量 夹角的余弦值;
(2)若向量 ﹣λ +2 平行,求λ的值.
3、已知关于x的不等式ax2﹣3x+2≤0的解集为{x|1≤x≤b}.
(1)求实数a,b的值;
(2)解关于x的不等式: >0(c为常数).
4、已知△ABC的三个内角A,B,C所对的边分别为a,b,c,向量 =(c+a,b), =(c﹣a,b﹣c),且
(1)求角A的大小;
(2)若a=3,求△ABC周长的取值范围.
5、已知直线l的方程为(2﹣m)x+(2m+1)y+3m+4=0,其中m∈R.
(1)求证:直线l恒过定点;
(2)当m变化时,求点P(3,1)到直线l的距离的最大值;
(3)若直线l分别与x轴、y轴的负半轴交于A,B两点,求△AOB面积的最小值及此时直线l的方程.
6、已知等比数列{an}满足a1=2,a2=4(a3﹣a4),数列{bn}满足bn=3﹣2log2an
(1)求数列{an},{bn}的通项公式;
(2)令cn= ,求数列{cn}的前n项和Sn
(3)若λ>0,求对所有的正整数n都有2λ2﹣kλ+2>a2nbn成立的k的取值范围.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 江西省赣州市2016-2017学年高一下学期期末数学考试试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;