河南省信阳市罗山县2016-2017学年八年级下学期数学期末考试试卷
年级:八年级 学科:数学 类型:期末考试 来源:91题库
一、选择题(共10小题)
时间(小时) | 5 | 6 | 7 | 8 |
人数 | 10 | 15 | 20 | 5 |
则这50名学生这一周在校的平均体育锻炼时间是( )
















甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断( )








二、填空题(共5小题)

班级 | 参赛人数 | 平均字数 | 中位数 | 方差 |
甲 | 55 | 135 | 149 | 191 |
乙 | 55 | 135 | 151 | 110 |
某同学根据上表分析得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀人数多于甲班优秀人数(每分钟输入汉字数≥150个为优秀);③甲班的成绩波动比乙班的成绩波动大,上述结论正确的是 .
①当x=1时,点P是正方形ABCD的中心;
②当x= 时,EF+GH>AC;
③当0<x<2时,六边形AEFCHG面积的最大值是 ;
④当0<x<2时,六边形AEFCHG周长的值不变.
其中正确的是 (写出所有正确判断的序号).
三、解答题(共8小题)









平均数(分) | 中位数(分) | 众数(分) | |
一班 |
|
| 90 |
二班 | 87.6 | 80 |
|
求证:四边形ABCD是 四边形.
填空,补全已知和求证;
分析问题:学生甲:如图1,过点P作PM⊥BC,PN⊥CD,垂足分别为M,N通过证明两三角形全等,进而证明两条线段相等.
学生乙:连接DP,如图2,很容易证明PD=PB,然后再通过“等角对等边”证明PE=PD,就可以证明PB=PE了.
解决问题:请你选择上述一种方法给予证明.
问题延伸:如图3,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,PB=PE还成立吗?若成立,请证明;若不成立,请说明理由.