2017年陕西省延安市黄陵中学高新部高考考前模拟数学试卷(理科)(一)

年级:高考 学科:数学 类型: 来源:91题库

一、选择题(共12小题)

1、“x<0”是“ln(x+1)<0”的(  )

A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件 D . 既不充分也不必要条件
2、设集合 ,B={y|y=2x , x>0},则A∪B=(   )
A . (1,2] B . [0,+∞) C . [0,1)∪(1,2] D . [0,2]
3、复数 等于(   )
A . i B . ﹣i C . D .
4、如图所示茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,乙组数据的平均数为17.4,则x、y的值分别为(   )

A . 7、8 B . 5、7 C . 8、5 D . 7、7
5、等比数列{an}的前n项和为Sn , 且4a1 , 2a2 , a3成等差数列,若a1=1,则S10=(   )
A . 512 B . 511 C . 1024 D . 1023
6、已知平面向量 ,且 ,则 =(   )
A . 4 B . ﹣6 C . ﹣10 D . 10
7、某程序框图如图所示,则该程序运行后输出的S的值为(   )

A . 1 B . C . D .
8、若二项式 的展开式共7项,则展开式中的常数项为(   )
A . ﹣120 B . 120 C . ﹣60 D . 60
9、如图,在中△ABC,∠CBA=∠CAB=30°,AC、BC边上的高分别为BD、AE,则以A、B为焦点,且过D、E的椭圆与双曲线的离心率的倒数和为(   )

A . B . 1 C . 2 D . 2
10、在△OAB中,O为坐标原点, ,则当△OAB的面积达最大值时,θ=(   )
A . B . C . D .
11、如图,正方体ABCD﹣A1B1C1D1中,P为底面ABCD上的动点,PE⊥A1C于E,且PA=PE,则点P的轨迹是(   )

A . 线段 B . 圆弧 C . 椭圆的一部分 D . 抛物线的一部分
12、设函数f(x)= ,若互不相等的实数x1 , x2 , x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是(   )
A . ] B . C . ] D .

二、填空题(共4小题)

1、

曲线y=x2和曲线y= 围成一个叶形图(如图所示阴影部分),其面积是      

2、已知f(n)=1+ ,经计算得f(4)>2,f(8)> ,f(16)>3,f(32)> …,观察上述结果,可归纳出的一般结论为      
3、如图,某数学兴趣小组为了测量西安大雁塔高AB,选取与塔底B在同一水平面

内的两个测点C与D.测得∠BCD=105°,∠BDC=45°,CD=26.4m,并在C点测得塔顶A的仰角为60°,则塔高AB=      m.( ≈2.45,结果精确到0.01).

4、在区间[0,1]上任取两个实数a,b,则函数f(x)= x2+ax﹣b在区间[﹣1,1]上有且仅有一个零点的概率为      

三、解答(共7小题)

1、在直角坐标系xOy中,直线l的参数方程为 (t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为

(Ⅰ)求圆C的圆心到直线l的距离;

(Ⅱ)设圆C与直线l交于点A、B.若点P的坐标为(3, ),求|PA|+|PB|.

2、已知等差数列{an}满足:a1=2,且a1 , a2 , a3成等比数列.
(1)求数列{an}的通顶公式.
(2)记Sn为数列{an}的前n项和,是否存在正整数n.使得Sn>60n+800?若存在,求n的最小值:若不存在,说明理由.
3、甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为 ,乙获胜的概率为 ,各局比赛结果相互独立.

 

(Ⅰ)求甲在4局以内(含 4 局)赢得比赛的概率;

(Ⅱ)记 X 为比赛决出胜负时的总局数,求X的分布列和数学期望.

4、如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.

(Ⅰ)证明:AC=AB1

(Ⅱ)若AC⊥AB1 , ∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.

5、已知点A(0,﹣2),椭圆E: + =1(a>b>0)的离心率为 ,F是椭圆的焦点,直线AF的斜率为 ,O为坐标原点.


(Ⅰ)求E的方程;

(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.

6、已知函数f(x)=x3﹣ax,g(x)= x2﹣lnx﹣
(1)若f(x)和g(x)在同一点处有相同的极值,求实数a的值;
(2)对于一切x∈(0,+∞),有不等式f(x)≥2x•g(x)﹣x2+5x﹣3恒成立,求实数a的取值范围;
(3)设G(x)= x2 ﹣g(x),求证:G(x)>
7、已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).
(1)当m=7时,求函数f(x)的定义域;
(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2017年陕西省延安市黄陵中学高新部高考考前模拟数学试卷(理科)(一)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;