2016-2017学年广东省广州市四校联考八年级下学期期中数学试卷

年级:八年级 学科:数学 类型:期中考试 来源:91题库

一、一.选择题(共10小题)

1、下列命题中,真命题是(  ).

A . 对角线相等且互相垂直的四边形是菱形 B . 有一条对角线平分对角的四边形是菱形 C . 菱形是对角线互相垂直平分的四边形 D . 菱形的对角线相等
2、在平行四边形ABCD中,∠A:∠B:∠C=2:3:2,则∠D=(  )

A . 36° B . 108° C . 72° D . 60°
3、式子 有意义,则x的取值范围是(   )
A . x≥3 B . x≤3 C . x≥﹣3 D . x≤﹣3
4、在△ABC中,∠ACB=90°,AC=40,CB=9,M、N在AB上且AM=AC,BN=BC,则MN的长为(   )

A . 6 B . 7 C . 8 D . 9
5、一直角三角形两边分别为3和5,则第三边为(   )
A . 4 B . C . 4或 D . 2
6、在△ABC中,三边长满足b2﹣a2=c2 , 则互余的一对角是(   )
A . ∠A与∠B B . ∠B与∠C C . ∠A与∠C D . 以上都不正确
7、下列二次根式中,最简二次根式是(   )
A . B . C . D .
8、如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S2=9,S3=8,S4=10,则S=(   )

A . 25 B . 31 C . 32 D . 40
9、下列命题:如图,正方形ABCD中,E、F分别为AB、AD上的点,AF=BE,CE、BF交于H,BF交AC于M,O为AC的中点,OB交CE于N,连OH.下列结论中:①BF⊥CE;②OM=ON;③ ;④ .其中正确的命题有(   )

A . 只有①② B . 只有①②④ C . 只有①④ D . ①②③④
10、实数a,b在数轴上的位置如图所示,则化简 +b的结果是(   )

A . 1 B . b+1 C . 2a D . 1﹣2a

二、填空题(共6小题)

1、2 × =      
2、m,n分别是 ﹣1的整数部分和小数部分,则2m﹣n=      
3、如图,台阶A处的蚂蚁要爬到B处搬运食物,它爬的最短距离是      

4、如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,M为斜边AB上一动点,过M作MD⊥AC,过M作ME⊥CB于点E,则线段DE的最小值为      

5、如图,矩形ABCD中,AB=15cm,点E在AD上,AE=9cm,连接EC,将矩形ABCD沿BE翻折,点A恰好落在EC上的点A′处,则BC=      cm.

6、如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2 , 再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3 , 以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是      

三、解答题(共9小题)

1、计算:( ﹣2)2014 +2)2015﹣2|﹣ |﹣(1﹣ 0
2、先化简,再求值: +(x﹣2)2﹣6 ,其中,x= +1.
3、如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.

4、如图,将平行四边形ABCD的对角线BD向两个方向延长至点E和点F,使BE=DF,求证:四边形AECF是平行四边形.

5、如图,点C在线段BD上,AC⊥BD,CA=CD,点E在线段CA上,且满足DE=AB,连接DE并延长交AB于点F.

(1)求证:DE⊥AB;
(2)若已知BC=a,AC=b,AB=c,设EF=x,则△ABD的面积用代数式可表示为;SABD= c(c+x)你能借助本题提供的图形,证明勾股定理吗?试一试吧.
6、如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接AF交对角线于点E,连接EC

(1)求证:AE=EC;
(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC的什么位置?说明理由.
7、如图,已知四边形ABCD为正方形,AB= ,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.

①求证:矩形DEFG是正方形;

②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.

8、如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE于E,AF⊥CF于F,直线EF分别交AB、AC于M、N.

(1)求证:四边形AECF为矩形;
(2)试猜想MN与BC的关系,并证明你的猜想;
(3)如果四边形AECF是菱形,试判断△ABC的形状,直接写出结果,不用说明理由.
9、

如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.

(1)探究筝形对角线之间的位置关系,并证明你的结论;

(2)在筝形ABCD中,已知AB=AD=10,BC=CD,BC>AB,BD、AC为对角线,BD=16.

①若∠ABC=90°,求AC的长;

②过点B作BF⊥CD于F,BF交AC于点E,连接DE.当四边形ABED为菱形时,求点F到AB的距离.

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2016-2017学年广东省广州市四校联考八年级下学期期中数学试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;