2017年高考数学真题试卷(江苏卷)
年级:高考 学科:数学 类型: 来源:91题库
一、填空题(共14小题)
如图是一个算法流程图:若输入x的值为 ,则输出y的值是 .


如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1 , 球O的体积为V2 , 则 的值是 .





如图,在同一个平面内,向量 ,
,
的模分别为1,1,
,
与
的夹角为α,且tanα=7,
与
的夹角为45°.若
=m
+n
(m,n∈R),则m+n= .



二、解答题(共12小题)
求证:(Ⅰ)EF∥平面ABC;
(Ⅱ)AD⊥AC.



(Ⅰ)若 ∥
,求x的值;
(Ⅱ)记f(x)= ,求f(x)的最大值和最小值以及对应的x的值.
如图,在平面直角坐标系xOy中,椭圆E: =1(a>b>0)的左、右焦点分别为F1 , F2 , 离心率为
,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1 , 过点F2作直线PF2的垂线l2 .
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线l1 , l2的交点Q在椭圆E上,求点P的坐标.
如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10 cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)
(Ⅰ)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;
(Ⅱ)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.
(Ⅰ)证明:等差数列{an}是“P(3)数列”;
(Ⅱ)若数列{an}既是“P(2)数列”,又是“P(3)数列”,证明:{an}是等差数列.
(Ⅰ)求b关于a的函数关系式,并写出定义域;
(Ⅱ)证明:b2>3a;
(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣ ,求a的取值范围.
如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.
求证:(Ⅰ)∠PAC=∠CAB;
(Ⅱ)AC2 =AP•AB.


(Ⅰ)求AB;
(Ⅱ)若曲线C1: =1在矩阵AB对应的变换作用下得到另一曲线C2 , 求C2的方程.


如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= ,∠BAD=120°.
(Ⅰ)求异面直线A1B与AC1所成角的余弦值;
(Ⅱ)求二面角B﹣A1D﹣A的正弦值.
1 | 2 | 3 | … | m+n |
(Ⅰ)试求编号为2的抽屉内放的是黑球的概率p;
(Ⅱ)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)< .