2016-2017学年江西省景德镇市八年级上学期期中数学试卷
年级:八年级 学科:数学 类型:期中考试 来源:91题库
一、选择题(共6小题)
1、如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1 , l2 , l3上,且l1 , l2之间的距离为2,l2 , l3之间的距离为3,则AC的长是( )
A .
B .
C .
D . 7



2、一直角三角形的两直角边长为3和4,则第三边长为( )
A .
B . 5
C .
或5
D . 7


3、一直角三角形的两直角边长为3和4,则第三边长为( )
A .
B . 5
C .
或5
D . 7


4、一个正数的两个平方根分别是2a﹣1与﹣a+2,则a的值为( )
A . ﹣1
B . 1
C . 2
D . ﹣2
5、已知x轴上的点P到y轴的距离为3,则点P的坐标为( )
A . (3,0)
B . (0,3)
C . (0,3)或(0,﹣3)
D . (3,0)或(﹣3,0)
6、已知点A的坐标是(﹣5,10),点B的坐标是(x,x﹣1),直线AB∥y轴,则x的值是( )
A . ﹣5
B . 11
C . 5
D . ﹣9
7、如果
=3,那么(m+n)2等于( )

A . 3
B . 9
C . 27
D . 81
二、填空题(共6小题)
1、计算:
﹣
= .


2、在△ABC中,∠C=90°,c=25cm,a:b=3:4,则S△ABC= .
3、已知点P(3,a)关于y轴的对称点为Q(b,2),则ab= .
4、如图所示,数轴上有A、B、C三个点,且点B是线段AC的中点,点A表示﹣3,点B表示的是﹣
,则点C表示的数是 .

5、如图:有一个圆柱,底面圆的直径AB=
,高BC=12,P为BC的中点,蚂蚁从A点爬到P点的最短距离是 .

6、Rt△ABC中,∠BAC=90°,AB=AC=2.以AC为一边,在△ABC外部作等腰直角三角形ACD,则线段BD的长为 .
三、解答题(共11小题)
1、计算:3
﹣9
+2
.



2、解方程:27(x+1)3+64=0.
3、如图是每个小正方形边长都为1的6×5的网格纸,请你在下列两幅图中用没有刻度的直尺各作一个斜边为5的格点直角三角形.(要求两个直角三角形不全等)
4、已知点P(2x,3x﹣1)是平面直角坐标系上的点.
(1)若点P在第一象限的角平分线上,求x的值;
(2)若点P在第三象限,且到两坐标轴的距离和为11,求x的值.
5、意大利著名画家达•芬奇验证勾股定理的方法如下:
①在一张长方形的纸板上画两个边长分别为a、b的正方形,并连接BC、FE.
②沿ABCDEF剪下,得两个大小相同的纸板Ⅰ、Ⅱ,请动手做一做.
③将纸板Ⅱ翻转后与Ⅰ拼成其他的图形.
④比较两个多边形ABCDEF和A′B′C′D′E′F′的面积,你能验证勾股定理吗?
6、已知a=
+1,b=
﹣1,求下列代数式的值:


(1)求ab的值
(2)求a2+ab+b2的值
(3)
+
.


7、如图,已知四边形ABCD是长方形,△DCE是等边三角形,A(0,0),B(4,0),D(0,2),求E点的坐标.
8、如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=4.
(1)求点B的坐标;
(2)求△ABC的面积;
(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为7?若存在,请直接写出点P的坐标;若不存在,请说明理由.
9、如图,在△ABC中,AB=10,BC=12,BC边上的中线AD=8.
(1)证明:△ABC为等腰三角形;
(2)点H在线段AC上,试求AH+BH+CH的最小值.
10、探究题:
=3,
=0.5,
=6,
=
,
=0.
根据以上算式,回答:
(1)
一定等于a吗?如果不是,那么
= ;


(2)利用你总结的规律,计算:
①若x<2,则 = ;
② = .
(3)若a,b,c为三角形的三边长,化简:
+
+
.



11、如图1,AB=BC=CD=DA,∠A=∠B=∠BCD=∠ADC=90°,点E是AB上一点,点F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)在图1中,如果点G在AD上,且∠GCE=45°,那么EG=BE+DG是否成立,请说明理由.
(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图2,AD∥BC(BC>AD),∠B=90°,AB=BC=12,点E是AB上一点,且∠DCE=45°,BE=4,求DE的长.
12、如图1,AB=BC=CD=DA,∠A=∠B=∠BCD=∠ADC=90°,点E是AB上一点,点F是AD延长线上一点,且DF=BE.