2016-2017学年广东省东莞市高三上学期期末数学试卷(理科)

年级:高三 学科:数学 类型:期末考试 来源:91题库

一、选择题(共12小题)

1、已知集合 A={x|x2﹣x﹣2>0},B={x|1≤x≤3},则图中阴影部分所表示的集合为(   )

A . [1,2) B . (1,3] C . [1,2] D . (2,3]
2、若复数z 满足z(1+i)=﹣2i(i为虚数单位), 是z 的共轭复数,则 •z=(   )
A . B . C . 2 D . 1
3、已知函数 的最小正周期为π,将函数f(x)的图象向右平移 个所得图象对应的函数为y=g(x),则关于函数为y=g(x)的性质,下列说法不正确的是(   )
A . g(x)为奇函数 B . 关于直线 对称 C . 关于点(π,0)对称 D . 上递增
4、设D为△ABC所在平面内一点, ,则(   )
A . B . C . D .
5、《九章算术•均输》中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5 钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,乙所得为(   )
A . B . C . D .
6、已知函数f(x)= ,则函数 y=f (1﹣x) 的大致图象是(   )
A . B . C . D .
7、在投篮测试中,每人投3次,其中至少有两次投中才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学能通过测试的概率为(   )
A . 0.352 B . 0.432 C . 0.36 D . 0.648
8、对于实数m>﹣3,若函数 图象上存在点(x,y)满足约束条件 ,则实数m 的最小值为(   )
A . B . ﹣1 C . D . ﹣2
9、一个几何体的三视图如图,则该几何体的体积为(   )

A . B . 1 C . D . 2
10、已知数列 {an}  的前 n 项和为Sn , S1=6,S2=4,Sn>0且S2n , S2n1 , S2n+2成等比数列,S2n1 , S2n+2 , S2n+1成等差数列,则a2016等于(   )
A . ﹣1009 B . ﹣1008 C . ﹣1007 D . ﹣1006
11、已知函数f(x)=x3+ax2+bx+c有两个极值点x1 , x2 , 若x2<f(x1)<x1 , 则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数可能为(   )
A . 3,4,5 B . 4,5,6 C . 2,4,5 D . 2,3,4
12、如图所示的茎叶图(图一)为高三某班50名学生的化学考试成绩,图(二)的算法框图中输入的 为茎叶图中的学生成绩,则输出的 分别是(   )

A . B . C . D .

二、填空题(共4小题)

1、设向量 =(x,2), =(1,﹣1),且 方向上的投影为 ,则x的值是      
2、(a+ )(1﹣x)4的展开式中含x项的系数为﹣6,则常数a=      
3、轴截面是正三角形的圆锥的表面积与它的外接球的表面积的比是      
4、轴截面是正三角形的圆锥的表面积与它的外接球的表面积的比是      
5、在△ABC中,∠ACB=120°,D是 AB 上一点,满足∠ADC=60°,CD=2,若CB ,则∠ACD的最大值为      

三、解答题(共7小题)

1、设△ABC 的内角 A,B,C 的对边分别是a,b,c,且 a= b cosC+c sinB.

(Ⅰ)求角B 的大小;

(Ⅱ)若点M 为BC的中点,且 AM=AC,求sin∠BAC.

2、设Sn为各项不相等的等差数列an的前n 项和,已知a3a8=3a11 , S3=9.
(1)求数列{an}的通项公式;
(2)若bn= ,数列{bn}的前n 项和为Tn , 求 的最小值.
3、在如图所示的几何体中,平面ACE⊥平面ABCD,四边形ABCD 为平行四边形,∠CAD=90°,EF∥BC,EF= BC,AC= ,AE=EC=1.

(1)求证:CE⊥AF;
(2)若二面角E﹣AC﹣F 的余弦值为 ,求点D 到平面ACF 的距离.
4、某学校为了解该校高三年级学生数学科学习情况,对广一模考试数学成绩进行分析,从中抽取了n 名学生的成绩作为样本进行统计(该校全体学生的成绩均在[60,140),按照[60,70),[70,80),[80,90),[90,100),[100,110),[110,120),[120,130),[130,140)的分组作出频率分布直方图如图1所示,样本中分数在[70,90)内的所有数据的茎叶图如图2所示.

根据上级统计划出预录分数线,有下列分数与可能被录取院校层次对照表为表( c ).

 分数

[50,85]

[85,110]

[110,150]

 可能被录取院校层次

 专科

 本科

 重本

(1)求n和频率分布直方图中的x,y的值;
(2)根据样本估计总体的思想,以事件发生的频率作为概率,若在该校高三年级学生中任取3 人,求至少有一人是可能录取为重本层次院校的概率;
(3)在选取的样本中,从可能录取为重本和专科两个层次的学生中随机抽取3 名学生进行调研,用ξ表示所抽取的3 名学生中为重本的人数,求随机变量ξ的分布列和数学期望.
5、已知函数f(x)= (a,b∈R)在点 (2,f(2)) 处切线的斜率为﹣ ﹣ln 2,且函数过点(4, ).

(Ⅰ)求a、b 的值及函数 f (x)的单调区间;

(Ⅱ)若g(x)= (k∈N*),对任意的实数x0>1,都存在实数x1 , x2满足0<x1<x2<x0 , 使得f(x0)=f(x1)=f(x2),求k 的最大值.

6、已知曲线C 的参数方程为 (α为参数),以直角坐标系原点O 为极点,x 轴正半轴为极轴建立极坐标系.

(Ⅰ)求曲线C 的极坐标方程;

(Ⅱ)设l1:θ= ,l2:θ= ,若l 1、l2与曲线C 相交于异于原点的两点 A、B,求△AOB的面积.

7、已知函数f(x)=|x﹣1|+|x+3|.
(1)解不等式f(x)≥8;
(2)若不等式f(x)<a2﹣3a的解集不是空集,求实数a的取值范围.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2016-2017学年广东省东莞市高三上学期期末数学试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;