2016-2017学年河南省安阳市安阳县高一上学期期中数学试卷
年级:高一 学科:数学 类型:期中考试 来源:91题库
一、选择题(共12小题)
1、已知集合A={x|1<x≤5},B={x|log2x≥1},则A∩B=( )
A . {x|2≤x≤5}
B . {x|1<x≤2}
C . {x|1<x≤3}
D . {x|1<x≤5}
2、若函数f(x)满足f(x﹣1)=x2+1,则f(﹣1)=( )
A . 1
B . 2
C . 3
D . 4
3、函数
的定义域为( )

A . (﹣∞,1]
B . (0,1]
C .
D .


4、已知函数
,则f(f(﹣1))=( )

A . ﹣1
B . 0
C . 1
D . 2
5、函数f(x)=x2+lgx﹣3的一个零点所在区间为( )
A .
B .
C .
D .




6、下列函数是偶函数的是( )
A . y=1﹣lg|x|
B .
C .
D .



7、已知a=lg3,
,c=lg0.3,这三个数的大小关系为( )

A . b<a<c
B . a<b<c
C . c<a<b
D . c<b<a
8、已知lg5=m,lg7=n,则log27=( )
A .
B .
C .
D .




9、已知函数y=f(x)的图象如图所示,则函数y=f(6x)的零点个数为( )
A . 0
B . 1
C . 2
D . 3
10、已知奇函数f(x)的定义域为(﹣∞,0)∪(0,+∞),当x>0时,f(x)=ln(|x﹣1|+1),则函数f(x)的图象大致为( )
A .
B .
C .
D .




11、已知定义在R上的函数f(x)=x2+2ax+3在(﹣∞,1]上是减函数,当x∈[a+1,1]时,f(x)的最大值与最小值之差为g(a),则g(a)的最小值为( )
A .
B . 1
C .
D . 2


12、已知函数
是定义域上的单调增函数,则a的取值范围是( )

A . [3﹣
,2)
B .
C .
D .




二、填空题(共4小题)
1、若log3x=5,则
= .

2、已知幂函数f(x)的图象过点
,则f(2)=

3、设集合A={x|x=2k﹣1,k∈Z},B={x|x=2k+1,k∈N,且k<3},则A∩B= .
4、定义在R上的奇函数f(x)满足:当x>0时,f(x)=2x﹣1,则满足
的实数x的取值范围为 .

三、解答题(共6小题)
1、已知函数
的定义域为集合A,B={x|x>3或x<2}.

(1)求A∩B;
(2)若C={x|x<2a+1},B∩C=C,求实数a的取值范围.
2、已知函数
.

(1)求函数f(x)的定义域和值域;
(2)若f(x)≤1,求x的取值范围.
3、某商场在近30天内每件的销售价格P(元)与时间t(天)的函数关系是P=
,该商场的日销售量Q=﹣t+40(0<t≤30,t∈N),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天.

4、已知函数f(x)=﹣2x2+ax+b且f(2)=﹣3.
(1)若函数f(x)的图象关于直线x=1对称,求函数f(x)在区间[﹣2,3]上的值域;
(2)若函数f(x)在区间[1,+∞)上递减,求实数b的取值范围.
5、已知函数
,其中b是常数.

(1)若y=f(x)是奇函数,求b的值;
(2)求证:y=f(x)是单调增函数.
6、若函数f(x)满足:f(﹣x)+f(x)=ex+e﹣x , 则称f(x)为“e函数”.
(1)试判断f(x)=ex+x3是否为“e函数”,并说明理由;
(2)若f(x)为“e函数”且
,

(ⅰ)求证:f(x)的零点在 上;
(ⅱ)求证:对任意a>0,存在λ>0,使f(x)<0在(0,λa)上恒成立.