2016-2017学年安徽省蚌埠五中、十二中联考高一上学期期中数学试卷
年级:高一 学科:数学 类型:期中考试 来源:91题库
一、选择题(共12小题)
1、若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是( )
A . 锐角三角形
B . 直角三角形
C . 钝角三角形
D . 等腰三角形
2、已知f(x)=ax3+bx﹣4,其中a,b为常数,若f(﹣2)=2,则f(2)的值等于( )
A . ﹣2
B . ﹣4
C . ﹣6
D . ﹣10
3、若全集U={0,1,2,3}且∁UA={2},则集合A的真子集共有( )
A . 3个
B . 5个
C . 7个
D . 8个
4、下列各项中,不可以组成集合的是( )
A . 所有的正数
B . 等于2的数
C . 接近于0的数
D . 不等于0的偶数
5、已知集合A={﹣1,1},B={x|mx=1},且A∪B=A,则m的值为( )
A . 1
B . ﹣1
C . 1或﹣1
D . 1或﹣1或0
6、函数y=f(x)的图象与直线x=1的公共点数目是( )
A . 1
B . 0
C . 0或1
D . 1或2
7、已知f(x)=2x+3,g(x+2)=f(x),则g(x)等于( )
A . 2x+1
B . 2x﹣1
C . 2x﹣3
D . 2x+7
8、已知g(x)=1﹣2x,f[g(x)]=
(x≠0),则f(
)等于( )


A . 15
B . 1
C . 3
D . 30
9、若y=x2 , y=(
)x , y=4x2 , y=x5+1,y=(x﹣1)2 , y=x,y=ax(a>1)上述函数是幂函数的个数是( )

A . 0个
B . 1个
C . 2个
D . 3个
10、函数y=3x与y=﹣3﹣x的图象关于下列哪种图形对称( )
A . x轴
B . y轴
C . 直线y=x
D . 原点中心对称
11、已知
,则a,b,c三个数的大小关系是( )

A . c<a<b
B . c<b<a
C . a<b<c
D . b<a<c
12、已知x+x﹣1=3,则
值为( )

A .
B .
C . 4
D . -4




二、填空题(共4小题)
1、函数y=
的定义域是 .

2、函数
的定义域是 ;值域是 .

3、
从小到大的排列顺序是 .

4、设集合A={x|﹣3≤x≤2},B={x|2k﹣1≤x≤2k+1},且A⊇B,则实数k的取值范围是
三、解答题(共6小题)
1、已知集合A={a2 , a+1,﹣3},B={a﹣3,a2+1,2a﹣1}若A∩B={﹣3},求实数a的值.
2、已知A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1},B⊆A,求m的取值范围.
3、对于任意实数x,函数f(x)=(5﹣a)x2﹣6x+a+5恒为正值,求a的取值范围.
4、已知函数f(x)=x2+2ax+2,x∈[﹣5,5],
(1)当a=﹣1时,求函数的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[﹣5,5]上是单调减函数.
5、已知函数f(x)的定义域为(﹣1,1),且同时满足下列条件:
(1)f(x)是奇函数;
(2)f(x)在定义域上单调递减;
(3)f(1﹣a)+f(1﹣a2)<0.
求a的取值范围.
(1)f(x)是奇函数;
(2)f(x)在定义域上单调递减;
(3)f(1﹣a)+f(1﹣a2)<0.
求a的取值范围.
6、已知 f(x)=a−
(a∈R) :

(1)证明f(x)是R上的增函数;
(2)是否存在实数a使函数f(x)为奇函数?若存在,请求出a的值,若不存在,说明理由.