人教A版2019必修一2.3一元二次函数、方程与不等式

年级: 学科: 类型:同步测试 来源:91题库

一、单选题(共8小题)

1、关于 的不等式 的解集为 ,则关于 的不等式 的解集为(   )
A . B . C . D .
2、不等式 对任何实数 恒成立,则 的取值范围是(   )
A . (﹣3,0 ) B . (﹣3,0] C . [﹣3,0 ) D . [﹣3,0]
3、已知 ,关于 的一元二次不等式 的解集为(    )
A . ,或 B . C . ,或 D .
4、已知集合A={x|x2-16<0},B={x|x2-4x+3>0},则A∪B等于(    )
A . {x|x<1} B . {x|3<x<4} C . {x|1<x<3} D . R
5、存在 ,使得关于 的不等式 有解,则 的取值范围为(    )
A . B . C . D .
6、不等式(x+5)(3-2x)≥6的解集是(    )
A . {x | x≤-1或x≥ } B . {x |-1≤x≤ } C . {x | x≤- 或x≥1} D . {x |- ≤x≤1}
7、设 ,则“ ”是“ ”的(    )
A . 充分不必要条件 B . 必要不充分条件 C . 充要条件 D . 既不充分也不必要条件
8、若不等式 的解集是 ,则 (     )
A . -6 B . -5 C . D . 6

二、多选题(共4小题)

1、已知正数a,b满足 ,a+b的最小值为t,不等式 的解集为M,则(    )
A . B . C . D .
2、设全集U=R,集合A={x|-x2+x+6>0},B={x|x2+2x-3<0},则(    )
A . A∩B=[-2,1) B . A∪B=(-3,3) C . A∩( B)=(1,3) D . A∪( B)=(-∞,-3]∪(-2,+∞)
3、已知关于 的不等式 ,下列结论正确的是(    )
A . 时,不等式 的解集为 B . 时,不等式 的解集为 C . 不等式 的解集恰好为 ,那么 D . 不等式 的解集恰好为 ,那么
4、已知关于 的不等式 解集为 ,则(    )
A . B . 不等式 的解集为 C . D . 不等式 的解集为

三、填空题(共4小题)

1、设p:(4x-1)2<1,q:x2-(2a+1)x+a(a+1)≤0.若¬p是¬q的必要不充分条件,则实数a的取值范围为.
2、设 已知关于 的不等式 的解集为 求不等式 的解集为
3、已知关于 的不等式 有唯一解,则实数 的取值集合为
4、若关于x的不等式组 没有整数解,则实数a的取值范围是.

四、解答题(共6小题)

1、已知不等式 的解集为
(1)求实数a,c的值;
(2)若不等式 的解集为A,不等式 的解集为B,且 ,求实数m的取值范围.
2、由于春运的到来,某火车站为舒缓候车室人流的压力,决定在候车大楼外搭建临时候车区,其中某次列车的候车区是一个总面积为 的矩形区域(如图所示),矩形场地的一面利用候车厅大楼外墙(长度为12m),其余三面用铁栏杆围挡,并留一个宽度为2m的入口.现已知铁栏杆的租用费用为80元/m.设该矩形区域的长为x(单位:m),租用铁栏杆的总费用为y(单位:元).

图片_x0020_100001

(1)将y表示为x的函数,并求租用搭建此区域的铁栏杆所需费用的最小值及相应的x.
(2)若所需总费用不超过2160元,则x的取值范围是多少?
3、关于x的不等式ax2-(a+2)x+2<0.
(1)当a=-1时,求不等式的解集;
(2)当a>0时,求不等式的解集.
4、关于 的不等式 .
(1)若不等式的解集为 ,求实数 的值;
(2)若 ,求不等式的解集.
5、设不等式 的解集为 ,关于 的不等式 的解集为 .
(1)求集合
(2)条件 ,条件 的充分条件,求实数 的取值范围.
6、  
(1)比较 的大小;
(2)解关于 的不等式
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 人教A版2019必修一2.3一元二次函数、方程与不等式

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;