河北省保定市定兴县2021年中考数学一模试卷

年级: 学科: 类型:中考模拟 来源:91题库

一、单选题(共16小题)

1、丽华根据演讲比赛中九位评委所给的分数作了如下表格

平均数

中位数

众数

方差

8.5

8.3

8.1

0.15

如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是(  )

A . 平均数 B . 众数 C . 方差 D . 中位数
2、如图是由7个小正方体组合成的几何体,则其左视图为(   )

A . B . C . D .
3、二次函数 的图象如图所示,对称轴为直线 ,下列结论错误的是(    )

A . B . 时,顶点的坐标为 C . 时, D . 时,yx的增大而增大
4、华为 手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).
A . B . C . D .
5、如图,证明矩形的对角线相等,已知:四边形 是矩形.求证: .以下是排乱了的证明过程:①∴ .②∵ ③∵四边形 是矩形④∴ ⑤∴ .证明步骤正确的顺序是(   )

图片_x0020_1011345342

A . ③①②⑤④ B . ②①③⑤④ C . ③⑤②①④ D . ②⑤①③④
6、某中学八年级学生去距学校10千米的景点参观,一部分学生骑自行车先走,过了30分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为 千米/小时,则所列方程正确的是(     )
A . B . C . D .
7、如图, 纸片的中位线,将 沿 所在的直线折叠,点 落在 边上的点 处,已知 的面积为7,则图中阴影部分的面积为(    )

A . 7 B . 14 C . 21 D . 28
8、构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BDAB , 连接AD , 得∠D=15°,所以tan15° .类比这种方法,计算tan22.5°的值为(  )

图片_x0020_100005

A . B . ﹣1 C . D .
9、如图,点 ,以原点O为位似中心,把线段AB缩短为原来的一半,得到线段CD,其中点C与点A对应,点D与点B对应,则点D的横坐标为(   )

A . 2 B . 2或-2 C . D . 或-
10、平方是 的数是(     )
A . B . C . D .
11、如图,经过创平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是(   )

A . 两点确定一条直线 B . 两点之间线段最短 C . 垂线段最短 D . 在同一平面内,过一点有且只有一条直线与已知直线垂直
12、下列四个数:3, 中,绝对值最大的数是   
A . 3 B . C . D .
13、计算 的结果为(    )
A . B . C . D .
14、化简 的结果为 ,则M为( )
A . B . C . D .
15、如图,在 中, ,以顶点A为圆心,适当长为半径画弧,分别交 于点M,N,再分别以点M,N为圆心,大于 长为半径画弧,两弧交于点P,作射线 交边 于点D,若 ,则 的面积是( )

A . 7 B . 30 C . 14 D . 60
16、嘉嘉和淇淇玩一个游戏,他们同时从点B出发,嘉嘉沿正西方向行走,淇淇沿北偏东30°方向行走,一段时间后,嘉嘉恰好在淇淇的南偏西60°方向上.若嘉嘉行走的速度为1m/s,则淇淇行走的速度为(    )

A . 0.5 m/s B . 0.8 m/s C . 1 m/s D . 1.2 m/s

二、填空题(共3小题)

1、在图中,含30°的直角三角板的直角边AC,BC分别经过正八边形的两个顶点,则图中∠1+∠2=       .

2、计算: 的结果是      
3、琪琪同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.

(1)yx之间的函数关系式为      x取值范围是      
(2)当x的值为6,8,10时,对应的函数值分别为 ,比较 的大小:       

三、解答题(共7小题)

1、如图,在△ABC中,AB=AC,O是边AC上的点,以OC为半径的圆分别交边BC、AC于点D、E,过点D作DF⊥AB于点F.

(1)求证:直线DF是⊙O的切线;
(2)若OC=1,∠A=45°,求劣弧DE的长.
2、小丽同学准备化简:(3x2﹣6x﹣8)﹣(x2﹣2x□6),算式中“□”是“+,﹣,×,÷”中的某一种运算符号.
(1)如果“□”是“×”,请你化简:(3x2﹣6x﹣8)﹣(x2﹣2x×6);
(2)若x2﹣2x﹣3=0,求(3x2﹣6x﹣8)﹣(x2﹣2x﹣6)的值;
(3)当x=1时,(3x2﹣6x﹣8)﹣(x2﹣2x□6)的结果是﹣8,请你通过计算说明“□”所代表的运算符号.
3、如图,在平面直角坐标系中,直线 与直线 相交于点P,并分别与x轴相交于点A、B.

(1)求交点P的坐标;
(2)求 PAB的面积;
(3)请把图象中直线 在直线 上方的部分描黑加粗,并写出此时自变量x的取值范围.
4、某公司为了宣传一种新产品,在某地先后举行40场产品促销会,已知该产品每台成本为10万元,设第x场产品的销售量为y (台),在销售过程中获得以下信息:

信息1:已知第一场销售产品49台,然后每增加一场,产品就少卖出1台;

信息2:产品的每场销售单价p(万元)由基本价和浮动价两部分组成,其中基本价保持不变,第1场--第20场浮动价与销售场次x成正比,第21场--第40场浮动价与销售场次x成反比,经过统计,得到如下数据:

x(场)

3

10

25

p(万元)

10.6

12

14.2

(1)求y与x之间满足的函数关系式;
(2)当产品销售单价为13万元时,求销售场次是第几场?
(3)在这40场产品促销会中,哪一场获得的利润最大,最大利润是多少?
5、在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快者获胜,可以得到一个奖品.

下面我们用四个卡片代表四名同学(如图):

(1)列式,并计算:

①﹣3经过A,B,C,D的顺序运算后,结果是多少?

②5经过B,C,A,D的顺序运算后,结果是多少?

(2)探究:数a经过D,C,A,B的顺序运算后,结果是45,a是多少?
6、如图, ,直线 经过点D.设 ), 于点A,将射线 绕点C按逆时针方向旋转 ,与直线 交于点E.

 

(1)判断:        (填“ ”或“ ”或“ ”);
(2)猜想 的形状,并说明理由;
(3)若 的外心在其内部(不含边界),直接写出 的取值范围.
7、某球室有三种品牌的 个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知 (一次拿到 元球)
(1)求这 个球价格的众数;
(2)若甲组已拿走一个 元球训练,乙组准备从剩余 个球中随机拿一个训练.

①所剩的 个球价格的中位数与原来 个球价格的中位数是否相同?并简要说明理由;

②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.

又拿

先拿

1. 本站所有内容未经许可不可转载!
4. 试卷库 > 河北省保定市定兴县2021年中考数学一模试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;