江苏省无锡市滨湖区2015-2016学年八年级上学期数学期末考试试卷
年级:八年级 学科: 类型:期末考试 来源:91题库
一、单选题(共6小题)
1、一元二次方程x2+x﹣2=0的根的情况是( )
A . 有两个不相等的实数根
B . 有两个相等的实数根
C . 只有一个实数根
D . 没有实数根
2、从单词“happy”中随机抽取一个字母,抽中p的概率为( )
A .
B .
C .
D .




3、下列哪一个函数,其图形与x轴有两个交点( )
A . y=17(x+50)2+2016
B . y=17(x﹣50)2+2016
C . y=﹣17(x+50)2+2016
D . y=﹣17(x﹣50)2﹣2016
4、如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于( )
A . 57.5°
B . 65°
C . 115°
D . 130°
5、已知二次函数y=x2﹣x+a(a>0),当自变量x取m时,其相应的函数值小于0,那么下列结论中正确的是( )
A . m﹣1>0
B . m﹣1<0
C . m﹣1=0
D . m﹣1与0的大小关系不确定
6、AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为 .
二、填空题(共9小题)
1、已知⊙O的半径为5cm,圆心O到直线l的距离为4cm,那么直线l与⊙O的位置关系是 .
2、如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:AB=4:9,则S△ADE:S△ABC= .
3、若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为 cm(结果保留根号).
4、若一个圆锥的侧面展开图是一个半径为6cm,圆心角为120°的扇形,则该圆锥的高为 cm.
5、已知正六边形的边长为4cm,分别以它的三个不相邻的顶点为圆心,边长为半径画弧(如图),则所得到的三条弧的长度之和为 cm.(结果保留π)
6、如图,电线杆上的路灯距离地面8m,身高1.6m的小明(AB)站在距离电线杆的底部(点O)20m的A处,则小明的影子AM长为 m.
7、某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是 m.
8、如图,在⊙O中,AD是直径,BC是弦,D为
的中点,直径AD交BC于点E,AE=5,ED=1,则BC的长是 m.

9、若二次函数y=ax2+bx+c的图象如图所示,则不等式a(x﹣2)2+b(x﹣2)+c<0的解集为 .
三、解答题(共11小题)
1、请探究两个等腰三角形相似的条件,用文字语言直接写出探究的结果即可.
2、 计算题
(1)解方程:2x2﹣4x﹣6=0.
(2)①直接写出函数y=2x2﹣4x﹣6的图象与x轴交点坐标;
②求函数y=2x2﹣4x﹣6的图象的顶点坐标.
3、九(2)班组织了一次朗读比赛,甲、乙两队各10人的比赛成绩(10分制)如下表(单位:分):
甲 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;
(2)计算乙队成绩的平均数和方差;
(3)已知甲队成绩的方差是1.4分2 , 则成绩较为整齐的是 队.
4、如图,G是边长为8的正方形ABCD的边BC上的一点,矩形DEFG的边EF过点A,GD=10.
(1)求FG的长;
(2)直接写出图中与△BHG相似的所有三角形.
5、一个不透明的袋子中装有3个红球和1个白球,这些球除颜色外都相同.
(1)从中随机摸出1个球,记录颜色后放回,搅匀,再摸出1个球.摸出的两个球中,1个为红球,1个为白球的概率为 ;
(2)从中随机摸出1个球,记录颜色后不放回,再摸出1个球.求摸出的两个球中,1个为红球,1个为白球的概率.
6、在淘宝一年一度的“双十一”活动中,某电商在2014年销售额为2500万元,要使 2016年“双十一”的销售额达到3600万元,平均每年“双十一”销售额增长的百分率是多少?
7、在作二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象时,先列出下表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y1 | … | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 | … |
y2 | … | 0 | 2 | 4 | 6 | 8 | 10 | 12 | … |
请你根据表格信息回答下列问题,
(1)二次函数y1=ax2+bx+c的图象与y轴交点坐标为 ;
(2)当y1>y2时,自变量x的取值范围是 ;
(3)请写出二次函数y1=ax2+bx+c的三条不同的性质.
8、 综合题
(1)如图(1),已知射线OP与线段OH,在射线OP上取点D、E、F,且OD=DE=EF,用尺规作出OH的三等分点M、N;(不写作法,保留作图痕迹)
(2)请用尺规在图(2)中∠BAC的内部作出一点O,使点O到AB的距离等于点O到AC的距离的2倍.(不写作法,保留作图痕迹)
9、如图,在矩形ABCD中,点O是对角线AC上一点,以OC为半径的⊙O与CD交于点M,且∠BAC=∠DAM.
(1)求证:AM与⊙O相切;
(2)若AM=3DM,BC=2,求⊙O的半径.
10、某家禽养殖场,用总长为110m的围栏靠墙(墙长为22m)围成如图所示的三块矩形区域,矩形AEHG与矩形CDEF面积都等于矩形BFHG面积的一半,设AD长为xm,矩形区域ABCD的面积为ym2 .
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,y有最大值?最大值是多少?
11、如图(1),在矩形ABCD中,AB=3,BC=4,连接BD.现将一个足够大的直角三角板的直角顶点P放在BD所在的直线上,一条直角边过点C,另一条直角边与AB所在的直线交于点G.
(1)是否存在这样的点P,使点P、C、G为顶点的三角形与△GCB全等?若存在,画出图形,并直接在图形下方写出BG的长.(如果你有多种情况,请用①、②、③、…表示,每种情况用一个图形单独表示,如果图形不够用,请自己画图)
(2)如图(2),当点P在BD的延长线上时,以P为圆心、PB为半径作圆分别交BA、BC延长线于点E、F,连EF,分别过点G、C作GM⊥EF,CN⊥EF,M、N为垂足.试探究PM与FN的关系.