2015-2016学年河南省洛阳市孟津一中高三上学期期末数学试卷(理科)

年级:高三 学科:数学 类型:期末考试 来源:91题库

一、选择题(共12小题)

1、复数z满足 ,则 =(  )
A . 1 B . 2 C . D .
2、 =(  )
A . B . C . - D . -
3、“m=2”是“loga2+log2a≥m(a>1)恒成立”的(  )
A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件 D . 既不充分也不必要条件
4、已知等比数列{an}的公比为4,且a1+a2=20,设bn=log2an , 则b2+b4+b6+…+b2n等于(  )
A . n2+n B . 2n2+n C . 2(n2+n) D . 4(n2+n)
5、为了纪念抗日战争胜利70周年,从甲、乙、丙等5名候选民警中选2名作为阅兵安保人员,为9月3号的阅兵提供安保服务,则甲、乙、丙三人中有2人被选中的概率是(  )
A . B . C . D .
6、为调查高中三年级男生的身高情况,选取了5000人作为样本,如图是此次调查中的某一项流程图,若输出的结果是3800,则身高在170cm以下的频率为(  )

A . 0.24 B . 0.38 C . 0.62 D . 0.76
7、设 F1F2分别为双曲线x2﹣y2=1的左,右焦点,P是双曲线上在x轴上方的点,∠F1PF2为直角,则sin∠PF1F2的所有可能取值之和为(  )
A . B . 2 C . D .
8、一个几何体的三视图如图所示,则这个几何体的体积等于(  )

A . 12 B . 4 C . D .
9、将函数 向右平移 个单位,再将所得的函数图象上的各点纵坐标不变,横坐标变为原来的2倍,得到函数y=g(x)的图象,则函数y=g(x)与 ,x轴围成的图形面积为(  )
A . B . C . D .
10、在△ABC中, ,则过点C,以A、H为两焦点的椭圆的离心率为(  )

A . B . C . D .
11、已知底面为正方形的四棱锥O﹣ABCD,各侧棱长都为 ,底面面积为16,以O为球心,以2为半径作一个球,则这个球与四棱锥O﹣ABCD相交部分的体积是(  )
A . B . C . D .
12、已知x1 , x2(x1<x2)是方程4x2﹣4kx﹣1=0(k∈R)的两个不等实根,函数 定义域为[x1 , x2],g(k)=f(x)max﹣f(x)min , 若对任意k∈R,恒只有 成立,则实数a的取值范围是(  )
A . B . C . D .

二、填空题(共4小题)

1、设向量 均为单位向量,且( + 2=1,则 夹角为      
2、已知(2x﹣ n展开式的二项式系数之和为64,则其展开式中常数项是      
3、平面上满足约束条件 的点(x,y)形成的区域为D,区域D关于直线y=2x,对称的区域为E,则区域D和E中距离最近两点的距离为      
4、定义max{a,b}表示实数a,b中的较大的数.已知数列{an}满足a1=a(a>0),a2=1,an+2= (n∈N*),若a2015=4a,记数列{an}的前n项和为Sn , 则S2016的值为      

三、解答题(共8小题)

1、如图,在△ABC中,D为AB边上一点,DA=DC,已知B= ,BC=1.

(1)若△ABC是锐角三角形,DC= ,求角A的大小;
(2)若△BCD的面积为 ,求边AB的长.
2、为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到如下2×2列联表,平均每天喝500ml以上为常喝,体重超过50kg为肥胖.已知在这30人中随机抽取1人,抽到肥胖的学生的概率为

常喝

不常喝

合计

肥胖

2

不肥胖

18

合计

30

(1)请将上面的列联表补充完整.能否在犯错误的概率不超过0.005的前提下认为肥胖与常喝碳酸饮料有关?说明你的理由.
(2)现从常喝碳酸饮料的学生中抽取3人参加电视节目,记ξ表示常喝碳酸饮料且肥胖的学生人数,求ξ的分布列及数学期望.

参考数据:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

3、如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直线AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP.

(1)设点M为棱PD中点,求证:EM∥平面ABCD;
(2)线段PD上是否存在一点N,使得直线BN与平面PCD所成角的正弦值等于 ?若存在,试确定点N的位置;若不存在,请说明理由.
4、抛物线D以双曲线C:8y2﹣8x2=1的焦点F(0,c),(c>0)为焦点.
(1)求抛物线D的标准方程;
(2)过直线l:y=x﹣1上的动点P作抛物线D的两条切线,切点为A,B.求证:直线AB过定点Q,并求出Q的坐标;
(3)在(2)的条件下,若直线PQ交抛物线D于M,N两点,求证:|PM|•|QN|=|QM|•|PN|
5、设函数f(x)=alnx+b(x2﹣3x+2),其中a,b∈R.
(1)若a=b,讨论f(x)极值(用a表示);
(2)当a=1,b=- ,函数g(x)=2f(x)﹣(λ+3)x+2,若x1 , x2(x1≠x2)满足g(x1)=g(x2)且x1+x2=2x0 , 证明:g′(x0)≠0.
6、如图,圆内接四边形ABCD的边BC与AD的延长线交于点E,点F在BA的延长线上.

(1)若 = = ,求 的值;
(2)若EF∥CD,证明:EF2=FA•FB.
7、已知直线l: (t为参数)经过椭圆 (φ为参数)的左焦点F.
(1)求m的值;
(2)设直线l与椭圆C交于A、B两点,求|FA|•|FB|的最大值和最小值.
8、已知函数 ,且f(x)≥t恒成立.
(1)求实数t的最大值;
(2)当t取最大值时,求不等式|x+t|+|x﹣2|≥5的解集.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2015-2016学年河南省洛阳市孟津一中高三上学期期末数学试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;