山东省莱州市2018-2019学年八年级下学期数学期末试卷
年级: 学科: 类型:期末考试 来源:91题库
一、单选题(共10小题)
1、若
, 则
,
,
的大小关系是( )




A .
B .
C .
D .




2、如图,AC=AD,BC=BD,则有( )
A . AB垂直平分CD
B . CD垂直平分AB
C . AB与CD互相垂直平分
D . CD平分∠ACB
3、把不等式组
的解集表示在数轴上,下列选项正确的是( )

A .
B .
C .
D .




4、如果莱州市2019年6月1日最高气温是
,最低气温是
,则当天莱州市气温
的变化范围是( )



A .
B .
C .
D .




5、下列说法正确的是( )
A . 扔100次硬币,都是国徽面向上,是不可能事件
B . 小芳在扔图钉游戏中,扔10次,有6次都是钉尖朝下,所以钉尖朝下的可能性大
C . 王明同学一直是级部第一名,他能考上重点高中是必然事件
D . 投掷一枚均匀的骰子,投出的点数是10,是一个确定事件
6、如图,已知直线
,
,且
,则
等于( )




A .
B .
C .
D .




7、关于
、
的二元一次方程组
的解也是二元一次方程
的解,则k的值是( ).




A .
B .
C .
D .




8、已知等腰三角形的两边长分别为
和
,那么这个等腰三角形的周长是( )


A .
B .
C .
或
D . 不能确定




9、“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是( )
A .
B .
C .
D .




10、如图,点
的坐标是
,若点
在
轴上,且
是等腰三角形,则点
的坐标不可能是( )






A .
B .
C .
D .




二、填空题(共10小题)
1、一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋中随机摸出一球,记下颜色,然后把它放回口袋中.不断重复上述过程.小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有 .
2、在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B等于 .
3、如图,将三角板的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3= °.
4、任意抛掷一枚质地均匀的骰子一次,朝上的点数大于4的概率等 .
5、命题“同角的补角相等”的条件是 .
6、如图,折叠直角三角形纸片的直角,使点
落在斜边
上的点
处,已知
,
,则
.






7、如图,
是等边三角形,过它的三个顶点分别作对边的平行线,则图中共有 个等边三角形.

8、等腰三角形一腰上的高与另一腰的夹角为
,腰长为2,则其底边上的高为 .

9、若不等式组
的解集是-1<x<1,则(a+b)2019= .

10、已知关于x的不等式组
只有四个整数解,则实数a的取值范是 .

三、解答题(共9小题)
1、
(1)解方程组:
.

(2)解不等式组:
.

2、如图,
,
是旧河道
两旁的两个村庄.为方便村民饮水,计划在旧河道
上打一口水井
,用管道引水到两村,要求该井到两村的距离相等,请用尺规在图中作出点
的位置(保留作图痕迹,不要求写作法).






3、如图,把一个转盘分成六等份,依次标上数字1、2、3、4、5、6,小明和小芳分别只转动一次转盘.小明同学先转动转盘,结果指针指向2,接下来小芳转动转盘,若把小明和小芳转动转盘指针指向的数字分别记作
、
,把
、
作为点
的横、纵坐标.





(1)写出点
所有可能的坐标;

(2)求点
在直线
上的概率.


4、如图,在
中,
,
,
是一条角平分线.




求证: .
5、在共建美好家园活动中,校团委把一批树苗分给九年级(1)班同学去栽种,如果每人分2棵,还剩42棵,如果每人分3棵,那么最后一个人得到的树苗少于5棵,(但至少分的一棵),问九年级(1)班至少有多少学生?至多有多少学生?
6、如图,直线
:
与直线
:
相交于点
.





(1)求关于
,
的方程组
的解;



(2)已知直线
经过第一、二、四象限,则当
时,
.



7、如图,求证:
.

8、开学初,李芳和王平去文具店购买学习用品,李芳用18元钱买了1支钢笔和3本笔记本;王平用30元买了同样的钢笔2支和笔记本4本.
(1)求每支钢笔和每本笔记本的价格;
(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔笔记本共36件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不多于钢笔数的2倍,共有多少种购买方案?请你一一写出.
9、已知:如图,
平分
,
,垂足为
,点
在
上,
,
分别与线段
,
相交于
,
.












(1)求证:
;

(2)若
,请你判断
与
的数量关系,并说明理由.


