江西省吉安市峡江县2020-2021学年九年级上学期数学期末试卷
年级: 学科: 类型:期末考试 来源:91题库
一、单选题(共6小题)
1、下列是关于
的一元二次方程的是( )

A .
B .
C .
D .




2、在Rt△ABC中,∠C=90°,AB=6,AC=4,则cosA的值是( )
A .
B .
C .
D .




3、如图所示,将一个正方体切去一个角,则所得几何体的主视图为( )
A .
B .
C .
D .




4、如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为1:3,点A,B,E在x轴上,若OA=2,则点G的坐标为( )
A . (3,6)
B . (4,8)
C . (6,12)
D . (6,10)
5、如图,△ABC中,∠BAC=90°,AB=8,将△ABC沿直线BC向右平移,得到△EDF,连接AD,若四边形ACFD为菱形,EC=4,则平移的距离为( )
A . 4
B . 5
C . 6
D . 8
6、对于抛物线
,下列说法错误的是( )

A . 若
,则抛物线的顶点在y轴上
B . 若抛物线经过原点,则一元二次方程
必有一根为0
C . 若
,则抛物线的对称轴必在y轴的左侧
D . 若顶点在x轴下方,则一元二次方程
有两个不相等的实数根




二、填空题(共6小题)
1、如果两个相似多边形面积之比为4:9,则它们的边长之比为 .
2、若反比例函数
的图象位于第二、四象限,则k的取值范围是 .

3、如图是一个圆柱体的三视图,由图中数据计算此圆柱体的表面积为 .(结果保留π)
4、已知
,
是一元二次方程
的两个根,则
.




5、如图,在△ABC中,AB=AC=10,点D,E分别在BC,AC边上,若∠ADE =∠B,BD=4,CE=3,则CD的长为 .
6、在正方形ABCD中,点E在对角线BD上,点P在正方形的边上,若∠AEB=105°,AE=EP,则∠AEP的度数为 .
三、解答题(共11小题)
1、矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=
(k>0)的图象与边AC交于点E.

(1)当点F运动到边BC的中点时,求点E的坐标;
(2)连接EF,求∠EFC的正切值;
(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.
2、如图1是一种折叠台灯,将其放置在水平桌面上,图2是其简化示意图,测得其灯臂
长为
灯翠
长为
,底座
厚度为
根据使用习惯,灯臂
的倾斜角
固定为
,









(1)当
转动到与桌面平行时,求点
到桌面的距离;


(2)在使用过程中发现,当
转到至
时,光线效果最好,求此时灯罩顶端
到桌面的高度(参考数据:
,结果精确到个位).




3、如图,在正方形ABCD中,AB=10cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止.设△BEF的面积为ycm2 , E点的运动时间为x秒.
(1)求证:CE=EF;
(2)求y与x之间关系的函数表达式,并写出自变量x的取值范围;
(3)求△BEF面积的最大值.
4、如图,在Rt△ABC中,∠C=90˚,tanA
,BC=6,求AC的长和sinA的值.

5、
(1)解方程:
;

(2)计算:4sin45º·cos60º-3tan30º.
6、如图,放映幻灯时,通过光源A,把幻灯片上的图形DE放大到屏幕BC上,若光源A到幻灯片DE的距离AE长为20cm,幻灯片DE到屏幕BC的距离EC长为40cm,且幻灯片中的图形ED的高度为6cm,求屏幕上图形BC的高度.
7、如图是由两个等腰直角三角形组合的图形,请分别在图1和图2中,仅用无刻度的直尺按要求画图.
(1)在图①中,作出AD的中点;
(2)在图②中,△ABC与△DEF相似比为2:3,BC=2CE,作出BF的垂直平分线.
8、把4张普通扑克牌;方块3,红心6,黑桃10,红心6,洗匀后正面朝下放在桌面上.
(1)从中随机抽取一张牌是黑桃的概率是多少?
(2)从中随机抽取一张,再从剩下的牌中随机抽取另一张.请用表格或树状图表示抽取的两张牌牌面数字所有可能出现的结果,并求抽出一对6的概率.
9、如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),求当矩形ABCD的面积最大时AB的长.
10、已知关于x的一元二次方程
.

(1)若方程的两根之积为-5,求m的值;
(2)若方程
有两个不相等的实数根,试判断另一个关于x的一元二次方程
的根的情况.


11、如图,△ABC中,AB=AC=6,BC=4,点D在AB上.
(1)当△ABC∽△CBD时,求BD的长;
(2)在(1)中的CD是否平分∠ACB?如果平分,说明理由;如果不平分,利用备用图,画出∠ACB的平分线CD,并求BD的长.