辽宁省锦州市凌海市2019-2020学年七年级下学期数学期末试卷
年级: 学科: 类型:期末考试 来源:91题库
一、单选题(共8小题)
1、将一直角三角板与两边平行的纸条如图放置.已知∠1=30°,则∠2的度数为( )
A . 30°
B . 45°
C . 50°
D . 60°
2、如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=75°,∠ACB=35°,然后在M处立了标杆,使∠CBM=75°,∠MCB=35°,得到
MBC≌
ABC,所以测得MB的长就是A,B两点间的距离,这里判定
MBC≌
ABC的理由是( )




A . SAS
B . AAA
C . SSS
D . ASA
3、如图,下面图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间之间的关系,下列说法中错误的是( )
A . 第3分钟时汽车的速度是40千米/小时
B . 第12分钟时汽车的速度是0千米/小时
C . 从第3分钟后到第6分钟,汽车停止不动
D . 从第9分钟到第12分钟,汽车速度从60千米/小时减少到0千米/小时
4、下列计算结果正确的是( )
A . 3x+2x=5x2
B . (﹣a3b)2=a6b2
C . ﹣m2•m4=m6
D . (a3)3=a6
5、下面每组数分别是三根小木棒的长度,用它们不能摆成一个三角形的是( )
A . 5cm , 10cm , 5cm
B . 7cm , 8cm , 9cm
C . 3cm , 4cm , 5cm
D . 6cm , 20cm , 20cm
6、在下列交通标志图案中,具有轴对称性质的图案是( )
A .
B .
C .
D .




7、在七年(1)与七年(2)班举行拔河比赛前,根据双方的实力,环环预测:“七年(1)获胜的机会是80%”,那么下面四个说法正确的是( )
A . 七年(2)班肯定会输掉这场比赛
B . 七年(1)班肯定会赢得这场比赛
C . 若比赛10次,则七年(1)班会赢得8次
D . 七年(2)班也有可能会赢得这场比赛
8、在正方形网格中,∠AOB的位置如图所示,则点P、Q、M、N中在∠AOB的平分线上是( )
A . P点
B . Q点
C . M点
D . N点
二、填空题(共8小题)
1、若4x=2,4y=3,则4x+y= 。
2、如图,点E在AD的延长线上,下列四个条件:①∠3=∠4;②∠1=∠2;③∠A=∠5;④∠C+∠ABC=180°.能判定AB∥CD的条件是 (填序号)
3、世界上最小的开花结果植物是澳大利亚的出水浮萍,其果实质量只有 0. 00 000
0076 克,用科学记数法表示是 克.
4、如图,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=30°,则∠BOE= 度,∠AOG= 度.
5、在一定条件下,若物体运动的路程S(米)与时间t(秒)的关系式为S=3t2+2t+1,则当t=3时,该物体所经过的路程为 .
6、小明将飞镖随意投中如图所示的正方体木框中,那么投中阴影部分的概率为 .
7、如图
ABC中,AD是BC上的中线,CE是
ACD中AD边上的中线,若
ABC的面积是24,则
ACD的面积是 ,
ACE的面积是 .





8、某电影院地面的一部分为扇形,观众席的座位数按下列方式设置:
排数(x) |
1 |
2 |
3 |
4 |
…… |
座位数(y) |
40 |
43 |
46 |
49 |
…… |
若排数x是自变量,y是因变量,则y与x之间的函数关系式为 .
三、解答题(共8小题)
1、计算:
(1)
;

(2)
.

2、先化简,再求值:(x+4)2﹣(x﹣4)2 , 其中
.

3、如图,在
中,
.请用尺规作图法在
上找一点D,使得点D到
的距离等于
.(保留作图痕迹,不写作法)





4、某人制成了一个如图所示的游戏转盘,转盘被分成8个相同的扇形,取名为“开心转转转”.游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则参与者交费2元;若指针指向字母“B”,则参与者获奖3元,若指针指向字母“C”,则参与者获奖1元.那么任意转动转盘一次,转盘停止后,参与者交费2元、参与者获奖3元、参与者获奖1元的概率各为多少?
5、如图,B是AC中点,∠F=∠E,∠1=∠2.证明:AE=CF.
6、如图,点P是∠AOB外的一点,点Q与P关于OA对称,点R与P关于OB对称,直线QR分别交OA、OB于点M、N,若PM=PN=4,MN=5.
(1)求线段QM、QN的长;
(2)求线段QR的长.
7、甲、乙两人沿相同的路线骑行由A地到B地,骑行过程中路程与时间关系的图象如图所示.根据图象解答下列问题:
(1)甲、乙两人谁先到达终点?先到多长时间?
(2)分别求出甲、乙两人的行驶速度;
(3)在什么时间段内,两人均行驶在途中?(不包括起点和终点)
(4)当甲、乙两人途中相遇时,直接写出相遇地与A地的距离.
8、在
ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.

(1)如图1所示位置时判断
ADC与
CEB是否全等,并说明理由;


(2)如图2所示位置时判断
ADC与
CEB是否全等,并说明理由.

