2015-2016学年湖北省孝感市五校教学联盟高二下学期期末数学试卷(理科)

年级:高二 学科:数学 类型:期末考试 来源:91题库

一、选择题(共12小题)

1、在空间直角坐标系中,已知点P(x,y,z),下列叙述中正确的个数是(  )

①点P关于x轴对称点的坐标是P1(x,﹣y,z); 

②点P关于yOz平面对称点的坐标是P2(x,﹣y,﹣z);

③点P关于y轴对称点的坐标是P3(x,﹣y,z); 

④点P关于原点对称的点的坐标是P4(﹣x,﹣y,﹣z).

A . 3 B . 2 C . 1 D . 0
2、李芳有4件不同颜色的衬衣,3件不同花样的裙子,另有两套不同样式的连衣裙.“五一”节 需选择一套服装参加歌舞演出,则李芳有几种不同的选择方式(  )

A . 24 B . 14 C . 10 D . 9
3、已知F1、F2分别是双曲线 =1(a>0,b>0)的左、右焦点,以坐标原点O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于a2时,双曲线的离心率为(  )
A . B . C . D . 2
4、复数 的虚部是(   )

A . 2i B . C . D .
5、用反证法证明命题:“在一个平面中,四边形的内角中至少有一个不大于90度”时,反设正确的是(   )
A . 假设四内角至多有两个大于90度 B . 假设四内角都不大于90度 C . 假设四内角至多有一个大于90度 D . 假设四内角都大于90度
6、已知曲线y=f(x)在x=5处的切线方程是y=﹣x+8,则f(5)与f′(5)分别为(   )
A . 3,3 B . 3,﹣1 C . ﹣1,3 D . ﹣1,﹣1
7、(文)设a∈R,则a>1是 <1的(  )
A . 必要但不充分条件 B . 充分但不必要条件 C . 充要条件 D . 既不充分也不必要条件
8、以坐标轴为对称轴,以原点为顶点且过圆x2+y2﹣2x+6y+9=0的圆心的抛物线的方程是(  )

A . y=3x2或y=﹣3x2 B . y=3x2 C . y2=﹣9x或y=3x2 D . y=﹣3x2或y2=9x
9、定积分 等于(   )

A . B . C . D .
10、以下三个命题中:

①设有一个回归方程 =2﹣3x,变量x增加一个单位时,y平均增加3个单位;

②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;

③在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8.

其中真命题的个数为(   )

A . 0 B . 1 C . 2 D . 3
11、设f(x)是定义在R上的偶函数,当x>0时,f(x)+xf′(x)>0,且f(1)=0,则不等式xf(x)>0的解集为(   )
A . (﹣1,0)∪(1,+∞) B . (﹣1,0)∪(0,1) C . (﹣∞,﹣1)∪(1,+∞) D . (﹣∞,﹣1)∪(0,1)
12、设f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能是(   )

A . B .    C . D .

二、填空题(共4小题)

1、已知两定点F1(﹣1,0),F2(1,0)且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是      
2、观察下列式子:

1+ ,1+ + ,1+ + + ,…

据以上式子可以猜想:1+ + + +…+       

3、如图,若在矩形OABC中随机撒一粒豆子,则豆子落在图中阴影部分的概率为      

4、对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义:f″(x)是函数y=f(x)的导函数f′(x)的导数,若方程f″(x)=0有实数解x0 , 则称点(x0 , f(x0))y=f(x)”.有同学发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是“对称中心”.请你将这一发现作为条件,则函数f(x)=x3﹣3x2+3x的对称中心为      

三、解答题(共6小题)

1、甲、乙两名射手在一次射击中的得分是两个随机变量,分别记为X和Y,它们的分布列分别为

X

0

1

2

P

0.1

a

0.4

Y

0

1

2

P

0.2

0.2

b

(1)求a,b的值;
(2)计算X和Y的期望与方差,并以此分析甲、乙两射手的技术情况.
2、已知命题p:方程 =1所表示的图形是焦点在y轴上的双曲线,命题q:复数z=(m﹣3)+(m﹣1)i对应的点在第二象限,又p或q为真,p且q为假,求实数m的取值范围.
3、如图,直三棱柱ABC﹣A1B1C1 , 底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别为A1B1、A1A的中点.

(1)求 >的值;
(2)求证:BN⊥平面C1MN;
(3)求点B1到平面C1MN的距离.
4、已知函数f(x)= x2﹣3x+(a﹣1)lnx,g(x)=ax,h(x)=f(x)﹣g(x)+3x.
(1)当a=5时,求函数f(x)的导函数f′(x)的最小值;
(2)当a=3时,求函数h(x)的单调区间及极值.
5、双曲线C的中心在原点,右焦点为 ,渐近线方程为
(1)求双曲线C的方程;
(2)设直线l:y=kx+1与双曲线C交于A、B两点,问:当k为何值时,以AB为直径的圆过原点.
6、已知函数fn(x)= x3 (n+1)x2+x(n∈N*),数列{an}满足an+1=f'n(an),a1=3.
(1)求a2 , a3 , a4
(2)根据(1)猜想数列{an}的通项公式,并用数学归纳法证明;
(3)求证: + +…+
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2015-2016学年湖北省孝感市五校教学联盟高二下学期期末数学试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;