2015-2016学年湖北省黄冈市高二下学期期末数学试卷(理科)

年级:高二 学科:数学 类型:期末考试 来源:91题库

一、选择题(共12小题)

1、已知A={y|y=log2x,x>1},B={y|y=(x , x>1},则A∩B=(  )

A . (0, B . (0,1) C . , 1) D .
2、如表是某厂1﹣4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程是 =﹣0.7x+ ,则 =(   )

月份x

1

2

3

4

用水量y

4.5

4

3

2.5

A . 10.5 B . 5.15 C . 5.25 D . 5.2
3、若(3x2n的展开式中含有常数项,则正整数n 取得最小值时常数项为(   )
A . B . ﹣135 C . D . 135
4、若f′(x0)=2,则 等于(   )

A . ﹣1 B . ﹣2 C . 1 D .
5、已知随机变量X服从正态分布N(2,σ2),其正态分布密度曲线为函数f(x)的图象,且 f(x)dx= ,则P(x>4)=(   )

A . B . C . D .
6、设点P是曲线y=ex x+ 上的任意一点,P点处的切线的倾斜角为α,则角α的取值范围是(   )
A . [ B . [0, )∪( C . [0, )∪[ ,π) D . [
7、已知f(n)= + +…+ ,则f(k+1)﹣f(k)等于(   )

A . B . C . + + D .
8、若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4,5,6这六个数字中任取3个数,组成无重复数字的三位数,其中“伞数”有(   )
A . 120个 B . 80个 C . 40个 D . 20个
9、下列判断错误的是(  )
A . 若随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79,则P(ξ≤﹣2)=0.21 B . 若n组数据(x1 , y1)…(xn , yn)的散点都在y=﹣2x+1上,则相关系数r=﹣1 C . 若随机变量ξ服从二项分布:ξ~B(5, ),则Eξ=1 D . “am2<bm2”是“a<b”的必要不充分条件
10、春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:

做不到“光盘”

能做到“光盘”

45

10

30

15

P(K2≥k)

0.10

0.05

0.025

k

2.706

3.841

5.024

附:

参照附表,得到的正确结论是(   )

A . 在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别有关” B . 在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别无关” C . 有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关” D . 有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”
11、给出下列四个命题:

①f(x)=x3﹣3x2是增函数,无极值.

②f(x)=x3﹣3x2在(﹣∞,2)上没有最大值

③由曲线y=x,y=x2所围成图形的面积是

④函数f(x)=lnx+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是(﹣∞,2)

其中正确命题的个数为(   )

A . 1 B . 2 C . 3 D . 4
12、定义在区间[0,a]上的函数f(x)的图象如图所示,记以A(0,f(0)),B(a,f(a)),C(x,f(x))为顶点的三角形的面积为S(x),则函数S(x)的导函数S′(x)的图象大致是(   )

A . B . C . D .

二、填空题(共4小题)

1、下面是关于复数z= 的四个命题:p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.

其中的真命题为      

2、某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有      种.
3、二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2;三维空间中球的二维测度(表面积)S=4πr2 , 三维测度(体积)V= πr3;四维空间中“超球”的三维测度V=8πr3 , 则猜想其四维测度W=      
4、已知f(x)= x3+x,x∈R,若至少存在一个实数x使得f(a﹣x)+f(ax2﹣1)<0成立,a的范围为      

三、解答题(共5小题)

1、已知:全集U=R,函数 的定义域为集合A,集合B={x|x2﹣a<0}
(1)求∁UA;
(2)若A∪B=A,求实数a的范围.
2、已知函数f(x)= (a、b为常数),且f(1)= ,f(0)=0.
(1)求函数f(x)的解析式;
(2)判断函数f(x)在定义域上的奇偶性,并证明;
(3)对于任意的x∈[0,2],f(x)(2x+1)<m•4x恒成立,求实数m的取值范围.
3、甲、乙两位小学生各有2008年奥运吉祥物“福娃”5个(其中“贝贝”、“晶晶”、“欢欢”、“迎迎”和“妮妮各一个”),现以投掷一个骰子的方式进行游戏,规则如下:当出现向上的点数是奇数时,甲赢得乙一个福娃;否则乙赢得甲一个福娃,规定掷骰子的次数达9次时,或在此前某人已赢得所有福娃时游戏终止.记游戏终止时投掷骰子的次数为ξ
(1)求掷骰子的次数为7的概率;
(2)求ξ的分布列及数学期望Eξ.
4、一家公司计划生产某种小型产品的月固定成本为1万元,每生产1万件需要再投入2万元,设该公司一个月内生产该小型产品x万件并全部销售完,每万件的销售收入为4﹣x万元,且每万件国家给予补助2e﹣ 万元.(e为自然对数的底数,e是一个常数)
(1)写出月利润f(x)(万元)关于月产量x(万件)的函数解析式
(2)当月产量在[1,2e]万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生成量值(万件).(注:月利润=月销售收入+月国家补助﹣月总成本)
5、已知函数
(1)求函数f(x)的单调区间;
(2)证明:若a<5,则对任意 ,有

四、选考题(共3小题)

1、设函数f(x)=|x﹣1|+|x﹣a|.
(1)若a=﹣1,解不等式f(x)≥3
(2)如果∀x∈R,f(x)≥2,求a的取值范围.
2、如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.

(1)若D为AC的中点,证明:DE是⊙O的切线;
(2)若OA= CE,求∠ACB的大小.
3、已知曲线C的参数方程是 (α为参数),直线l的参数方程为 (t为参数),
(1)求曲线C与直线l的普通方程;
(2)若直线l与曲线C相交于P,Q两点,且|PQ|= ,求实数m的值.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2015-2016学年湖北省黄冈市高二下学期期末数学试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;