2022年浙教版数学八下期末复习阶梯训练:反比例函数(提高训练)
年级: 学科: 类型:复习试卷 来源:91题库
一、单选题(共10小题)

















































二、填空题(共6小题)



















三、解答题(共6小题)
(1)假如每天能运x立方米,所需时间为y天,写出y与x之间的函数表达式;
(2)若每辆拖拉机一天能运12立方米,则5辆这样的拖拉机要用多少天才能运完?
(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间内完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?

(Ⅰ)求这个函数的解析式;
(Ⅱ)判断点B(﹣1,6),C(3,2)是否在这个函数的图象上,并说明理由;
(Ⅲ)当﹣3<x<﹣1时,求y的取值范围.


(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.



C﹙5,n﹚,交y轴于点B,交x轴于点D.


四、综合题(共3小题)
已知:一次函数y=﹣x+b与反比例函数y= (x>0),当两个函数的图象有交点时,求b的取值范围.
﹣x+b=
x2﹣bx+4=0
∵两个函数有交点
∴△=b2﹣16≥0
但是方方遇到了困难:利用已学的知识无法解b2﹣16≥0这个不等式;
此时,圆圆提供了另一种解题思路;
第1步:先求出两个函数图象只有一个交点时,b= ▲ ;
第2步:画出只有一个交点时两函数的图象(请帮圆圆在直角坐标系中画出图象);
第3步:通过平移y=﹣x+b的图象,观察得出两个函数的图象有交点时b的取值范围是 ▲ .
应用:
如图,Rt△ABC中,∠C=90°,BC的长为x,AC的长为y,且S△ABC=12.
年度 |
2018 |
2019 |
2020 |
2021 |
投入技术改进资金x万元 |
2.5 |
3 |
4 |
4.5 |
产品成本y万元 |
14.4 |
12 |
9 |
8 |
