四川省成都市简阳市2021届九年级上学期数学12月月考试卷

年级: 学科: 类型:月考试卷 来源:91题库

一、单选题(共10小题)

1、已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是(   )
A . ﹣3 B . 3 C . 0 D . 0或3
2、小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是(   )
A . B . C . D .
3、一个几何体的主视图和俯视图如图所示,那么它的左视图可能是(   )

A . B . C . D .
4、如图,在平面直角坐标系中,等腰直角三角形 的顶点 分别在 轴、 轴的正半轴上, 轴,点 在函数 的图象上,若 ,则 的值为(   )

A . 1 B . C . D . 2
5、对于函数 ,下列说法错误的是(   )
A . 这个函数的图象位于第二、第四象限 B . 当x>0时,y随x的增大而增大 C . 这个函数的图象既是轴对称图形又是中心对称图形 D . 当x<0时,y随x的增大而减小
6、如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于(    )

图片_x0020_100001

A . B . C . 5 D . 4
7、方程 的解是(   )
A . B . C . D .
8、下列函数是反比例函数的是(  )
A . y=x B . C . D .
9、如图,在△ABC中,DE//BC,若 ,则 =(  )

A . B . C . D .
10、如图,下列条件之一能使平行四边形ABCD是菱形的为(  )

①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.

图片_x0020_1353084405

A . ①③ B . ②③ C . ③④ D . ①②③

二、填空题(共9小题)

1、如图,函数 (k为常数,k>0)的图象与过原点的O的直线相交于AB两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于CD两点,连接BM分别交x轴,y轴于点EF . 现有以下四个结论:①△ODM与△OCA的面积相等;②若BMAM于点M , 则MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则 ;④若 ,则MD2MA . 其中正确的结论的序号是      

2、如图,已知直角 中, 是斜边 上的高, ,则       

3、如图,正方形 的边长为4,E为 上一点,且 ,F为 边上的一个动点,连接 ,将 烧点E顺时什旋转60°得到 ,连接 ,则 的最小值为      

图片_x0020_111886295

4、若 ,则 =      .
5、反比例函数y= ,当x<0时,y随x的增大而增大.那么m的取值范围是      .
6、某商品经过连续两次降价,销售单价由原来的125元降到80元,设平均每次降价的百分率为x,则可列方程:      .
7、若 ,则 =      .
8、关于 的一元二次方程 有实数根,则实数 的取值范围是      .
9、如图,直线 ,等腰直角三角形 的三个顶点 分别在 上, 于点 ,已知 的距离为 的距离为 ,则 的值为      .

三、解答题(共9小题)

1、先化简,再求值: ÷(1+ ),其中x= +1.
2、如图,在平面直角坐标系中,一次函数 的图象与反比例函数 的图象交于 两点,已知

(1)求一次函数和反比例函数的解析式;
(2)求 点的坐标;
(3)连接 ,求 的面积.
3、已知关于x的方程x2-(m+2)x+(2m-1)=0。
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。
4、如图1,矩形ABCD中,点E为AB边上的动点(不与A,B重合),把 沿DE翻折,点A的对应点为 ,延长 交直线DC于点F,再把 折叠,使点B的对应点 落在EF上,折痕EH交直线BC于点H.

(1)求证:
(2)如图2,直线MN是矩形ABCD的对称轴,若点 恰好落在直线MN上,试判断 的形状,并说明理由;
(3)如图3,在(2)的条件下,点G为 内一点,且 ,试探究DG,EG,FG的数量关系.
5、解下列方程
(1)
(2)
6、一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.

根据以上信息解答下列问题:

(1)求实验总次数,并补全条形统计图;
(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?
(3)现将4种颜色的小球各放一个在口袋里,随机摸出两个球为红色和黄色的概率是多少?
7、如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.

(1)求证:△ABC≌△CDA;
(2)若∠B=60°,求证:四边形ABCD是菱形.
8、某水果店购进一批优质晚熟芒果,进价为每千克10元,售价不低于每千克15元,且不超过每千克40元,根据销售情况,发现该芒果在一天内的销售量y(千克)与该天的售价x(元/千克)之间的数量满足如下表所示的一次函数关系.

销售量y(千克)

32.5

35

35.5

38

售价x(元/千克)

27.5

25

24.5

22

(1)某天这种芒果售价为28元/千克.求当天该芒果的销售量
(2)设某天销售这种芒果获利m元,写出m与售价x之间的函数关系式.如果水果店该天获利400元,那么这天芒果的售价为多少元?
9、如图,在平面直角坐标系xOy中,一次函数 的图象经过点A(-2,0),与反比例函数 的图象交于点B 和点C.

(1)求一次函数和反比例函数的表达式;
(2)若点P在y轴上,且 的面积等于6,求点P的坐标;
(3)设M是直线AB上一点,过点M作 轴,交反比例函数 的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 四川省成都市简阳市2021届九年级上学期数学12月月考试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;