浙江省湖州市长兴县2021届九年级上学期数学开学试卷

年级: 学科: 类型:开学考试 来源:91题库

一、选择题(每小题3分,共30分)(共10小题)

1、若二次根式 有意义,则实数x的取值范围是( )
A . x≠8 B . x≥8 C . x≤8 D . x=8
2、甲、乙、丙、丁四名学生近5次数学成绩的平均数都是110分,方差如表,则这四名学生成绩最稳定的是( )

学生

方差(s2)

11.6

6.8

7.6

2.8

A . B . C . D .
3、将抛物线y=2(x-3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到拋物线的解析式是(    )
A . y=2(x-6)2 B . y=2(x-6)2+4 C . y= 2x2 D . y=2x2+4
4、已知关于x的一元二次方程x2+bx-1=0,则下列关于该方程根的判断,正确的是( )
A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 没有实数根 D . 实数根的个数与实数b的取值有关
5、若正比例函数y=kx经过点(-2,1),则它与反比例函数y= 的图象的两个交点分别在( )
A . 第一、二象限 B . 第二、四象限 C . 第一、三象限 D . 第三、四象限
6、平行四边形、矩形、菱形、正方形共有的性质是( )
A . 对角线互相平分 B . 对角线相等 C . 对角线互相垂直 D . 对角线互相垂直平分
7、四边形具有不稳定性,对于四条边长确定的四边形,当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC'D',若∠D'AB=30°,则菱形ABC'D'的面积与正方形ABCD的面积之比是(    )

A . 1 B . C . D .
8、若点A(-2,y1),B(1,y2),C(2,1)在反比例函数y= 的图象上,则( )
A . y2<y1<1 B . y1<y2<1 C . 1<y2<y1 D . y1<1<y2
9、小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD的边长为4,则图2中h的值为( )

A . 6 B . 4 C . 4+ D . 8
10、如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3),若抛物线y=ax2的图象与正方形有公共点,则实数a的取值范围是( )

A . ≤a≤3 B . ≤a≤1 C . ≤a≤3 D . ≤a≤1

二、填空题(每小题4分,共24分)(共6小题)

1、某商店4月份营业额为2.7万元,6月份营业额为3.5万元,平均每月的增长率为 ,根据题意可列方程为      .
2、已知一组数据的方差是4,则这组数据的标准差是      
3、抛物线y=3(x-1)2+8的顶点坐标为       
4、一个五边形所有内角都相等,它的每一个内角等于      
5、如图,DE为△ABC的中位线,点F在DE上,且∠AFC为直角,若DF=2cm,BC=16cm,则AC的长为      cm。

6、如图,已知在平面直角坐标系xOy中,Rt△OAB的直角顶点B在x轴的正半轴上,点A在第一象限,反比例函数y= (x>0)的图象经过OA的中点C,交AB于点D,连结CD,若△ACD的面积是2,则k的值是      

三、解答题(共66分)(共8小题)

1、为了了解某校八年级学生每周平均课外阅读时间的情况,随机抽取了50名八年级学生,对其每周平均课外阅读时间进行统计,并绘制成下面的统计图。

(1)这50名同学每周阅读时间的众数为      小时,中位数为      小时。
(2)求出这组数据的平均数。
2、某商店销售一款口罩,每袋的进价为12元.经市场调查发现,每袋售价每增加1元,日均销售量减少5袋.当售价为每袋18元时,日均销售量为100袋.设口罩每袋的售价为x元,日均销售量为y袋.
(1)用含x的代数式表示y;
(2)物价部门规定,该款口罩的每袋售价不得高于22元.当每袋售价定为多少元时,商店销售该款口罩所得的日均毛利润为720元?
3、计算:
(1)
(2)(2- )(3+2 )
4、解方程:
(1)2x2-5x+3=0;
(2)(x+1)2=4x
5、如图,在5×5的网格中,△ABC的三个顶点都在格点上。

(1)在图1中画出一个以AB为边的 ABDE,使顶点D,E在格点上。
(2)在图2中画出一条恰好平分△ABC周长的直线l(至少经过两个格点)。
6、如图,已知反比例函数y= 的图象与直线y=ax+b相交于点A(-2,3),B(1,m)。

 

(1)求出直线y=ax+b的表达式;
(2)在x轴上有一点P使得△PAB的面积为18,求出点P的坐标。
7、已知:如图,抛物线y=ax2+4x+c经过原点O(0,0)和点A (3,3),P为拋物线上的一个动点,过点P作x轴的垂线,垂足为B(m,0),并与直线OA交于点C。

 

(1)求抛物线的解析式;
(2)当点P在直线OA上方时,求线段PC的最大值。
8、在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90° ,BC=EF=3cm,AC=DF=4 cm,并进行如下研究活动。

活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移。

活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转a度(0≤a≤90),连结OB,OE(如图4)。

(1)图2中的四边形ABDE是平行四边形吗?请说明理由。
(2)当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3)。求AF的长。
(3)当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由。
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 浙江省湖州市长兴县2021届九年级上学期数学开学试卷

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;