初中数学浙教版八年级上册第二章 特殊三角形 单元检测(提高篇)

年级: 学科: 类型:单元试卷 来源:91题库

一、单选题(共10小题)

1、下列定理中逆定理不存在的是(  )

A . 全等三角形的对应角相等 B . 如果在一个三角形中,两边相等,那么它们所对的角也相等 C . 同位角相等,两直线平行 D . 角平分线上的点到这个角的两边的距离相等
2、如图,在3×3的网格中,与ABC成轴对称,顶点在格点上,且位置不同的三角形有(    )


A . 5个 B . 6个 C . 7个 D . 8个
3、如图,△ABC中,BC=18,若BD⊥AC于D点,CE⊥AB于E点,F,G分别为BC、DE的中点,若ED=10,则FG的长为( )

A . B . C . 8 D . 9
4、如图,OP平分∠AOB,PA⊥OA于A,PB⊥OB于B。下列结论中不一定成立的是( )

A . PA=PB B . PO平分∠APB C . OA=OB D . AB垂直平分OP
5、如图,点P是∠AOB内任意一点,OP=6cm,点M和点N分别是射线OA和射线OB上的动点,若△PMN周长的最小值是6 cm,则∠AOB的度数是(    )

图片_x0020_100003

A . 15 B . 30 C . 45 D . 60
6、如图,P为∠AOB内一定点,M、N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=(   )

图片_x0020_100005

A . 40° B . 45° C . 50° D . 55°
7、如图,开口玻璃罐长、宽、高分别为16、6和6,在罐內点E处有一小块饼干碎末,此时一只蚂蚁正好在罐外长方形ABCD的中心H处,蚂蚁到达饼干的最短距离是多少(    )

图片_x0020_100003

A . B . 17 C . D .
8、如图:D,E分别是△ABC的边BC、AC上的点,若AB=AC,AD=AE,则(   )

A . 当∠B为定值时,∠CDE为定值 B . 当∠α为定值时,∠CDE为定值 C . 当∠β为定值时,∠CDE为定值 D . 当∠γ为定值时,∠CDE为定值
9、如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为(    )

A . 140° B . 100° C . 50° D . 40°
10、勾股定理是人类最伟大的科学发现之一,在我国古代算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大的正方形内.若知道图中阴影部分的面积,则一定能求出( )

A . 直角三角形的面积 B . 最大正方形的面积 C . 较小两个正方形重叠部分的面积 D . 最大正方形与直角三角形的面积和

二、填空题(共6小题)

1、下列命题中,逆命题是真命题的是       (只填写序号)。

①直角三角形两条直角边的平方和等于斜边的平方;

②等腰三角形两腰的高线相等;

③若三条线段a,b,c是三角形的三边,则这三条线段满足a+b>c

④角的内部,到角两边距离相等的点在这个角的平分线上,

⑤全等三角形的面积相等;

2、定义:对于平面直角坐标系xOy中的线段PQ和点M,在△MPQ中,当PQ边上的高为2 时,称点M为PQ的等高点”,称此时MP+MQ的值为PQ的“等高距离”.已知P(1,2),Q(3,4),当PQ的“等高距离”最小时,则点M的坐标为      .
3、定义:到三角形两边距离相等的点叫做三角形的准内心.已知在Rt△ABC中,∠C=90°,AC=6,BC=8,点P是△ABC的准内心(不包括顶点),且点P在△ABC的某条边上,则CP的长为      
4、在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得的锐角为46°,则底角∠B的大小为      
5、如图,在四边形ABCE中,∠ABC=45°,AE=CE,连接AC,∠ACB=30°,过A作AD⊥AE交BC于D,若AD=AE,则  =      

6、在如图所示的三角形中,∠A=30°,点P和点Q分别是边AC和BC上的两个动点,分别连接BP和PQ,把△ABC分割成三个三角形△ABP,△BPQ,△PQC,若分割成的这三个三角形都是等腰三角形,则∠C有可能的值有      个.

三、综合题(共7小题)

1、在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD和△AFD关于直线AD对称,∠FAC的平分线交BC于点G,连接FG.

(1)求∠DFG的度数;
(2)设∠BAD=θ,

①当θ为何值时,△DFG为等腰三角形;

②△DFG有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.

2、在△ABC中,AB、AC边的垂直平分线分别交BC边于点M、N.

(1)如图①,若△AMN是等边三角形,则∠BAC=      °;
(2)如图②,若∠BAC=135°,求证:BM2+CN2=MN2.
(3)如图③,∠ABC的平分线BP和AC边的垂直平分线相交于点P,过点P作PH垂直BA的延长线于点H.若AB=4,CB=10,求AH的长.
3、已知:如图,△AOB的顶点O在直线 上,且AO=AB.

(1)画出△AOB关于直线 成轴对称的图形△COD,且使点A的对称点为点C;
(2)在(1)画出的图形中,AC与BD的位置关系是      
(3)在(1)画出的图形中连接AD,如果∠ABD=2∠ADB.

求证:△AOC是等边三角形,并直接写出∠DAO∶∠DAB的值.

4、如图,在 中, 于点 .动点 从点 出发,按 的路径运动,且速度为 ,设出发时间为 .

(1)求 的长.
(2)当 时,求证: .
(3)当点 边上运动时,若 是以 为腰的等腰三角形,求出所有满足条件的 的值.
(4)在整个运动过程中,若 为正整数),则满足条件的 的值有      个.
5、已知,△ABC,AD⊥BD于点D,AE⊥CE于点E,连接DE.

图片_x0020_100016

(1)如图1,若BD,CE分别为△ABC的外角平分线,求证:DE= (AB+BC+AC).
(2)如图2,若BD,CE分别为△ABC的内角平分线,(1)中的结论成立吗?若成立请说明理由;若不成立,请猜想出新的结论并证明;
(3)如图3,若BD,CE分别为△ABC的一个内角和一个外角的平分线,AB=8,BC=10,AC=7,请直接写出DE的长为      .
6、把三根长为3cm、4cm和5cm的细木棒首尾相连,能搭成一个直角三角形.
(1)如果把这三根细木棒的长度分别扩大为原来的a倍(a>1),那么所得的三根细木棒能不能搭成一个直角三角形, 为什么?
(2)如果把这三根细木棒的长度分别延长x cm(x>0),那么所得的三根细木棒还能搭成一个三角形吗?为什么?如果能,请判断这个三角形的形状(锐角三角形、直角三角形还是钝角三角形),并说明理由.
7、请阅读下列材料

问题:如图1,点A、B在直线l的同侧,在直线l上找一点P,使得AP+BP的值最小,小明的思路是:如图2所示,先作点A关于直线l的对称点A',使点A'、B分别位于直线l的两侧,再连接A'B,根据“两点间线段最短”可知A'B与直线l的交点P即为所求.

(1)如图3,在图2的基础上,设AA'与直线l的交点为C,过点B作BD⊥l,垂足为D,若CP=1,AC=1,PD=2,求出AP+BP的值:
(2)将(1)中的条件“AC=1”去掉,换成“BD=4-AC”,其它条件不变,直接写出此时AP+BP的值:
(3)请结合图形,求 的最小值.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 初中数学浙教版八年级上册第二章 特殊三角形 单元检测(提高篇)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;