2015-2016学年北京市房山区高三上学期期末数学试卷(理科)

年级:高三 学科:数学 类型:期末考试 来源:91题库

一、选择题(共8小题)

1、在复平面内,复数 对应的点位于(  )
A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限
2、在 的展开式中,常数项为(  )
A . 160 B . 64 C . 20 D . 8
3、执行如图所示的程序框图,则输出S的值为(  )

A . ﹣10 B . 6 C . 8 D . 14
4、如图,圆O的弦AB,CD相交于点E,过点A作圆O的切线与DC的延长线交于点P,若PA=6,AE=9,BE=2,ED=3,则PC=(  )

A . 1 B . 2 C . 3 D . 4
5、“b<a<0”是“ ”的(  )
A . 充分而不必要条件 B . 必要而不充分条件 C . 充分必要条件 D . 既不充分也不必要条件
6、若曲线x2+y2=r2经过不等式组 表示的平面区域,则r的取值范围是(  )
A . B . C . [1,2] D . [1,4]
7、如图是一个几何体的三视图,则该几何体的体积等于(  )

A . B . C . 1 D .
8、将编号为1至12的12本书分给甲、乙、丙三人,每人4本.

甲说:我拥有编号为1和3的书;

乙说:我拥有编号为8和9的书;

丙说:我们三人各自拥有的书的编号之和相等.

据此可判断丙必定拥有的书的编号是(  )

A . 2和5 B . 5和6 C . 2和11 D . 6和11

二、填空题(共6小题)

1、抛物线y2=2x的焦点坐标为      
2、向量 在正方形网格中的位置如图所示,若 ,则x=      ,y=      

3、在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρsinθ=1,曲线C的参数方程为 (ϕ为参数),l与C相交于A,B两点,则|AB|=      
4、已知函数f(x)=sinxcosx,则f(x)的最小正周期为      ,f(x)在 上的最小值为      
5、如图,定义在[﹣1,1]上的函数f(x)的图象为折线AOB.若方程f(x)﹣mx﹣m=0有两个不等的实根,则实数m的取值范围是      

6、已知非空集合M满足:∀a∈M,总有a2∉M且 .若M⊆{1,2},则M=      ;若 ,则满足条件的M共有      个.

三、解答题(共6小题)

1、在△ABC中,角A,B,C的对边分别为a,b,c,且a<b<c,
(1)求B的大小;
(2)若a=2, ,求c的值.
2、已知数列{an}(n=1,2,3,…)满足an+1=2an , 且a1 , a2+1,a3成等差数列,设bn=3log2an﹣7.
(1)求数列{an},{bn}的通项公式;
(2)求数列{|bn|}的前n项和Tn
3、某校学生会为了了解学生对于“趣味运动会”的满意程度,从高一、高二两个年级分别随机调查了20个学生,得到学生对“趣味运动会”所设项目的满意度评分如下:

高一:62  73 81  92  95 85  74  64 53  76

78 86  95  66 97  78  88 82  76  89

高二:73  83 62  51  91 46  53  73 64  82

93 48  65  81 74  56  54 76  65  79

(1)根据两组数据完成两个年级满意度评分的茎叶图,并通过茎叶图比较两个年级满意度评分的平均值及离散程度(不要求计算出具体值,给出结论即可);

高一

高二

4

3

5

6

4

2

6

6

8

8

6

4

3

7

9

2

8

6

5

1

8

7

5

5

2

9

(2)根据学生满意度评分,将学生的满意度从低到高分为三个等级:

满意度评分

低于70分

70分到89分

不低于90分

满意度等级

不满意

满意

非常满意

假设两个年级的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率.随机调查高一、高二各一名学生,记事件A:“高一、高二学生都非常满意”,事件B:“高一的满意度等级高于高二的满意度等级”.分别求事件A、事件B的概率.

4、如图1,在直角梯形ADCE中,AD∥EC,∠ADC=90°,AB⊥EC,AB=EB=1, .将△ABE沿AB折到△ABE1的位置,使∠BE1C=90°.M,N分别为BE1 , CD的中点.如图2.

(1)求证:MN∥平面ADE1
(2)求证:AM⊥E1C;
(3)求平面AE1N与平面BE1C所成锐二面角的余弦值.
5、设函数f(x)=(x﹣a)ex+(a﹣1)x+a,a∈R.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)设g(x)=f′(x),证明:当a>2时,函数g(x)在(0,+∞)上仅有一个零点;
(3)若对任意的x∈[0,2],恒有f(x)≤0成立,求实数a的取值范围.
6、已知椭圆C: 的离心率为 ,F是椭圆C的右焦点.过点F且斜率为k(k≠0)的直线l与椭圆C交于A,B两点,O是坐标原点.
(1)求n的值;
(2)若线段AB的垂直平分线在y轴的截距为 ,求k的值;
(3)是否存在点P(t,0),使得PF为∠APB的平分线?若存在,求出t的值;若不存在,说明理由.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 2015-2016学年北京市房山区高三上学期期末数学试卷(理科)

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;