初中数学北师大版八年级上学期 第七章 7.1 为什么要证明
年级: 学科: 类型:同步测试 来源:91题库
一、单选题(共3小题)
1、下列说法错误的是( )
A . 在同一平面内,没有公共点的两条直线是平行线
B . 如果两条直线都与第三条直线平行,那么这两条直线也互相平行
C . 经过直线外一点有且只有一条直线与该直线平行
D . 在同一平面内,不相交的两条线段是平行线
2、观察下列图形:它们是按照一定规律排列的,依照此规律,第6个图形共有( )个★.
A . 16
B . 18
C . 19
D . 20
3、观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为( )
A . 19
B . 21
C . 32
D . 41
二、填空题(共1小题)
1、同一平面内的三条直线a,b,c,若a⊥b,b⊥c,则a c.若a∥b,b∥c,则a c.若a∥b,b⊥c,则a c.
三、综合题(共3小题)
1、我们运用图(Ⅰ)中大正方形的面积可表示为(a+b)2 , 也可表示为c3+4(
ab),即(a+b)2=c2+4(
ab)由此推导出一个重要的结论a2+b2=c2 , 这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.


(1)请你用图(Ⅱ)(2002年国际数学家大会会标)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a,较小的直角边长都为b,斜边长都为c).
(2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+2y)2=x2+4xy+4y2 .
2、请观察下列算式,找出规律并填空。
,
,
,
···
根据以上规律解答以下三题:
(1)第10个等式是: =
第n个等式是: =
(2)计算:
的值。

(3)若有理数
满足
,试求:


的值。
3、问题情境:如图1,AB∥CD,∠A=30°,∠C=40°,求∠AEC的度数.
小明的思路是:
(1)初步尝试:按小明的思路,求得∠AEC的度数;
(2)问题迁移:如图2,AB∥CD,点E、F为AB、CD内部两点,问∠A、∠E、∠F和∠D之间有何数量关系?请说明理由;
(3)应用拓展:如图3,AB∥CD,点E、F为AB、CD内部两点,如果∠E+∠EFG=160°,请直接写出∠B与∠D之间的数量关系.