初中数学人教版九年级下学期 第二十七章 27.2.3 相似三角形应用举例

年级: 学科: 类型:同步测试 来源:91题库

一、单选题(共4小题)

1、现有一个测试距离为5m的视力表(如图),根据这个视力表,小华想制作一个测试距离为3m的视力表,则图中的 的值为(   )

A . B . C . D .
2、如图所示,某超市在一楼至二楼之间安装有电梯,天花板与地面平行.张强扛着箱子(人与箱子的总高度约为2.2m)乘电梯刚好安全通过,请你根据图中数据回答,两层楼之间的高约为( )

A . B . C . 11m D .
3、如图,为了测量一池塘的宽DE , 在岸边找到一点C , 测得CD=30m , 在DC的延长线上找一点A , 测得AC=5m , 过点AABDEEC的延长线于B , 测出AB=8m , 则池塘的宽DE为(   )

图片_x0020_100001

A . 32m B . 36m C . 48m D . 56m
4、《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前。其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长丈五尺.同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为(   )

A . 五丈 B . 四丈五尺 C . 一丈 D . 五尺

二、填空题(共2小题)

1、如图,在某一时刻测得1米长的竹竿竖直放置时影长1.2米,在同一时刻旗杆AB的影长不全落在水平地面上,有一部分落在楼房的墙上,测得落在地面上的影长BD=9.6米,留在墙上的影长CD=2米,则旗杆的高度AB为      米.

2、如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为      米.

三、解答题(共1小题)

1、一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.

四、综合题(共3小题)

1、有一块锐角三角形卡纸余料ABC,它的边BC=120 cm,高AD=80 cm,为使卡纸余料得到充分利用,现把它裁剪成一个邻边之比为2∶5的矩形纸片EFGH和正方形纸片PMNQ,裁剪时,矩形纸片的较长边在BC上,正方形纸片一边在矩形纸片的较长边EH上,其余顶点均分别在AB,AC上,具体裁剪方式如图所示.

(1)求矩形纸片较长边EH的长.
(2)裁剪正方形纸片时,小聪同学是按以下方法进行裁剪的:先沿着剩余料△AEH中与边EH平行的中位线剪一刀,再沿过该中位线两端点向边EH所作的垂线剪两刀,请你通过计算,判断小聪的剪法是否正确.
2、某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处。

(1)已知AB⊥BD、CD⊥BD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计):
(2)请你设计一个测量这段古城墙高度的方案。

要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法。

3、如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD

(1)求 的值
(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证MF=PF;
(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.
1. 本站所有内容未经许可不可转载!
4. 试卷库 > 初中数学人教版九年级下学期 第二十七章 27.2.3 相似三角形应用举例

说明

1、直接打印:比较直观,基本上所见即所得;
2、导出word:可以下载来编辑,样式需微调,可修改;
3、在线答案:包含了题目和答案,低碳环保,推荐!
4、只看答案:只有答案及解析,页面较少;